| 研究生: |
張哲瑞 Zhe-rui Zhang |
|---|---|
| 論文名稱: |
添加氧化鋁促進劑的稻殼灰分擔體銅觸媒應用於甲醇部份氧化產氫之研究 Hydrogen production by Partial Oxidation of methanol over Cu/Al2O3/RHA catalysts |
| 指導教授: |
張奉文
Feg-wen Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 氫氣 、甲醇部分氧化 、促進劑 、氧化鋁 、銅觸媒 、觸媒 |
| 外文關鍵詞: | hydrogen, partial oxidation of methanol, promoter, alumina, copper catalyst, catalyst |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
燃料電池(fuel cell)為將來最具有發展的潔淨能源裝置,其以氫氣做為燃料,經反應後產生能量與無汙染的水與二氧化碳,反應物氫氣一般皆以甲醇部份氧化(POM)產生。本研究是利用桃園縣的廢棄稻殼,經過多重處理後所得稻殼灰分( rice husk ash,RHA),並經由沈澱固著法製備擔載銅觸媒(Cu/Al2O3/RHA)。
本實驗利用熱重分析儀(TGA)決定製備時煅燒所需溫度,由氫氣程式升溫還原儀(TPR)探討觸媒還原難易程度,以N2O的氧化測其銅粒子大小與分散程度;以X光繞射分析儀(XRD)判斷觸媒之晶相;以掃描式電子顯微鏡(TEM)觀察觸媒形狀;以感應耦合電漿原子發射光譜(ICP-AES)測定觸媒組成。經由觸媒活性測試;反應溫度以473 K、498 K、523 K、548 K、573 K為操控變因,其它實驗變數包括進料之O2/CH3OH莫耳比(0.1~0.6),其結果顯示反應溫度以523 K,進料比為0.3最為適當,因此條件下有最低的CO選擇率。提升氧醇比,降低氫氣選擇率但不影響甲醇轉化率。由四種(573 K、673 K、773 K、873 K)不同煅燒溫度所製備Cu/Al2O3/RHA觸媒,其中以673 K煅燒所得觸媒活性較高,因觸媒中平均銅粒徑最小且分散度最高。
In this work, the rice husk ash (RHA) was used as a catalyst support. The RHA-supported copper catalysts (Cu/Al2O3/RHA) were prepared by the deposition-precipitation technique. Production of hydrogen by partial oxidation of methanol (POM) over Cu/Al2O3/RHA catalysts was investigated. The catalysts were characterized by a variety of techniques, including N2O chemisorption, X–ray diffraction, inductively coupled plasma-atomic mission spectrometer, thermogravimetric analyzer, scanning electron microscopy, transmission electron microscopy, and temperature-programmed reduction. The copper surface area was determined by pulse chemisorption using N2O. We found a correlation between the copper surface area and catalytic activity.
TEM images show that copper crystallites are spherical in shape. The particles size of copper increases with increasing the calcinaiton temperature. SEM observations show that these catalysts are formed with great structure of net. XRD analyses demonstrate that spinel CuAl2O4 is formed when the calcination temperature over 773 K . The results of the activity tests indicate that the Al2O3 promoter and the catalyst composition greatly influence the activity as well as the selectivity for H2 formation . The introduction of Al2O3 promoter not only helps to increase the activity of Cu/Al2O3/RHA catalyst but also improves the stability of the catalyst. The activity of Cu/Al2O3/RHA catalysts with different Al2O3 loading , O2/CH3OH ratio, calcination temperature and reaction temperature was optimized. The most suitable catalysts , prepared at 10wt.% Cu/1wt.% Al2O3/RHA, O2/CH3OH = 0.3, calcined at 673 K and reacted at 523 K show higher activity.
Agrell, J., H. Birgersson, M. Boutonnet, I. Melian-Cabrera,R.M. Navarro, J. L.G. Fierro, “Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3”, Journal of Catalysis., 291, 389, (2003).
Agrell, J., K. Hasselbo, K. Jansson, S. G. Järås, M. Boutonnet, “Production of hydrogen by partial oxidation of methanol over Cu/ZnO catalysts prepared by microemulsion technique”, Applied Catalysis A: General., 211, 239, (2001).
Alejo, L., R. Lago, M.A. Pefia, J.L.G. Fierro, “Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts”, Applied Catalysis A: General., 162, 281, (1997).
Bond, G.C., Namijo, S.N., “An improved procedure for estimating the surface area of supported copper catalysts”, Journal of Catalysis., 118, 507,(1989).
Cao, Chundi., K.Hohn, “Study of reaction intermediates of methanol decomposition and catalytic partial oxidation on Pt/Al2O3”, Applied Catalysis., 354, 26, (2009).
Evans, J.W., Winwright, M.S, Bridgewater, A.J, Young, D.J, “On the determination of copper surface area by reaction with nitrous oxide”, Applied Catalysis., 7, 75, (1983).
Gil. A., A. Diaz, L. M. Gandia, and M. Montes, “Influence of the preparation method and the nature of the support on the stability of nickel catalysts”, Applied Catalysis A., 109, 167 (1994).
Guerriro-Ruiz, A., I. Rodriguez-Ramos, and J. L. G. Fierro, Applied Catalysis., 72, 119 (1991).
Guerreiro, E.D., Gorriz, O.F., Rivarola, J.B., Arrua, L.A., “Characterization of Cu/SiO2 catalysts prepared by ion exchange for methanol dehydrogenation”, Applied Catalysis A: General., 165, 259, (1997).
Horny, C., A. Renken, L. Kiwi-Minsker, “Compact string reactor for autothermal hydrogen production”, Catalysis Today., 120, 45, (2007).
Huang, T.J., Wang, S.W., “Hydrogen production via partial oxidation of methanol over copper-zinc catalysts”, Applied Catalysis., 24, 287 , (1986).
Lindström, B., Pettersson, L.J., Govind Menon, P., “Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on γ-alumina for methanol reforming for fuel cell vehicles”, Applied Catalysis A: General., 234 , 111, (2002) .
Lippits, M.J., R.R.H. Boer Iwema, B.E. Nieuwenhuys, “A comparative study of oxidation of methanol on γ-Al2O3 supported group IB metal catalysts”, Catalysis Today., (2008).
Luo, M., P. Fang, M. He, Y. Xie, “In situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation”, Journal of Molecular Catalysis., 239, 243, (2005).
Marchi, A.J., J.L.G. Fierro, J.Santamara, A. Monzón, “Dehydrogenation of isopropylic alcohol on Cu/SiO2 catalyst: a study of the activity evolution and reactivation of the catalyst”, Applied Catalysis., A, 142, 375, (1996).
Narita, K., Takeyawa, N., Kobayashi, J., Toyoshima, I., “Adsorption of nitrous oxide on metallic copper catalysts”, Reaction.Kinetics. Catalysis. Leterst., 19, 91, (1982).
Osinga, T.J., B. G. Linsen and W. P.Beek, “The determination of the specific copper surface area in catalysts”, Journal of Catalysis., 277, 7, (1967).
Patel, M., A. Karera, and P. Prasanna, “Effect of Thermal and Chemical Treatment on Carbon and Silica Contents in Rice Husk”, Journal of Molecular Science., 20, 4387, (1987).
Raphael, O., Idem, Narendra, Bakhshi, “Production of Hydrogen from Methanol over Promoted Coprecipitated Cu-Al Catalysts:The Effects of Various Promoters and Catalyst Activation Methods”, Industrial. Engineering Chemistry Research., 34, 1548, (1995).
Richardson, J.T., Dubus, R.J., ”Crystallite size distributions of sintered nickel catalysts”, Journal of Catalysis., 57,417, (1979).
Riverors, H., Garz, C., “Rice Husks as a Source of High Purity Silica”, Journal of Crystal Growth., 22, 4665, (1987).
Shimokawabe, M., N. Takezawa, and H. Kobayashi, “Characterization of copper-silica catalysts prepared by ion exchange”, Applied Catalysis., 2, 379 (1982).
Suzuki, K.,Velu. S, Osaki, T, “Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts; a new and efficient method for the production of CO-free hydrogen for fuel cells”, Chem. Commun., 2341, (1999).
Shishido, T., Y. Yamamoto, H. Morioka, K. Takehira , “Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3catalysts prepared by homogeneous precipitation:Steam reforming and oxidative steam reforming”, Jouranal of Molecular Catalysis A: Chemical., 268, 185, (2007).
Toupance, T., M. Kermarec, and C. Louis, “Metal particles size in silica - supported copper catalysts influence condition of preperation and of thermal retreatments”, Journal of Physical Chemistry.B, 104, 965, (2000).
van den Oetelaar L.C.A., A. Partridge, S.L.G. Toussaint, C.F.J. Flipse, H.H. Brongersma, “A Surface science study of model catalysts. 2.Metal-support interactions in Cu/SiO2 model catalysts”, Journal of Physical Chemistry B., 102, 9532, (1998).
van der Grift C.J.G., P.A. Elberse, A. Mulder, J.W. Geus, “Preparation of silica-supported copper catalysts by means of deposition precipitation”, Applied Catalysis., 59, 275, (1990a).
van der Grift, C.J.G., Mulder A., Geus, J.W., “Characterization of silica-supported copper catalysts by means of temperature – programmed reduction”, Applied Catalysis., 60, 181, (1990b).
van der Grift, C.J.G., Wielers A.F.H., Joghi B.P.J., Van Beijnum J., De Boer M., Versluijs-Helder M., Geus J.W., “Effect of the reduction treatment on the structure and reactivity of silica-supported copper particles”, Journal of Molecular Catalysis., 131, 178, (1991).
van Dillen, A.J.,Geus,G.W., Hermans,M.A.L.,Van der Meijden, J., “Proceedings, 6th international congress on catalysis, London, 1976”, Chemical Society., 199,677, (1977).
Velu, S., K. Suzuki, T. Osaki, “Selective production of hydrogen by partial oxidation of methanol over catalysts derived from CuZnAl-layered double hydroxides”, Catalysis Letters., 62, 159, (1999).
Wang, Z., W. Wang, G. Lu, “Studies on the active species and on dispersion of Cu in Cu/SiO2 and Cu/Zn/SiO2 for hydrogen production via methanol partial oxidation”, International Journal of Hydrogen Energy., 28, 151,(2003a).
Wang, Z., W. Wang, G. Lu, “Studies on the active species and on dispersion of Cu in Cu/SiO2 and Cu/Zn/SiO2 for hydrogen production via methanol partial oxidation”, International Journal of Hydrogen Energy., 28, 151 , (2003b).
Wang, Z., J. Xi, W. Wang, G. Lu, “Selective production of hydrogen by partial oxidation of methanol over Cu/Cr catalysts”, Journal of Molecular Catalysis A:Chemical., 191, 123, (2003).
Wigley, T.M.L., Richels, R., and Edmonds, J.A., “Economic and environmental choice in the stabilization of atmospheric CO2 concentrations”, Nature., 379, 240,(1996).
Choi. Y., G. Harvey, Stenger., “Fuel cell grade hydrogen from methanol on a commercial Cu/ZnO/Al2O3 atalyst”, Applied Catalysis B:Environmental., 38, 259, (2002).
John Willett, “Gas chromatography” , “ACOL”, (1987).
吳榮宗, “工業觸媒概論”, “國興出版社”, (1995).
姚品全, “淺談銅觸媒”, 觸媒與製程, 8(2), (2000) 47.
王奕凱, “非均勻系催化原理與應用”, “國立編譯館主編” (2000).
郭茂穗, “以不同方法製備稻殼灰分-氧化鋁擔載鎳觸媒之研究”, 中央大學化學工程與材料工程研究所博士論文, (2002).
黃至瑋, “氧化矽擔體銅觸媒應用於甲醇部份氧化產製氫氣之研究”, 中央大學化學工程與材料工程研究所碩士論文, (2007).
李澤安, “氧化矽-氧化鋅複合擔體銅觸媒應用於甲醇部份氧化產製氫氣之研究”, 中央大學化學工程與材料工程研究所碩士論文, (2007).
黃志翔, “稻殼灰分擔載銅觸媒應用於氧化性甲醇蒸氣重組產製氫氣之研究”, 中央大學化學工程與材料工程研究所碩士論文, (2008).