跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔣至剛
Chih-Kang Chiang
論文名稱: 北台灣地區臭氧汙染之季節效應與東亞汙染出流之影響
Seasonal Effect and the Impact of Asian Continental Outflow on Ozone Mixing Ratio in Northern Taiwan
指導教授: 張時禹
Julius S. Chang
口試委員:
學位類別: 博士
Doctor
系所名稱: 地球科學學院 - 大氣物理研究所
Graduate Institute of Atmospheric Physics
畢業學年度: 98
語文別: 中文
論文頁數: 147
中文關鍵詞: 臭氧汙染季節效應汙染物長程傳送東亞汙染出流臭氧
外文關鍵詞: Ozone pollution, Ozone long-range transport, Asian continental ouflow
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著中國的工業化與經濟發展,中國之空氣污染物排放量持續增加,也使東亞污染出流可能增加其污染程度。北台灣地區正處於東亞污染出流影響之鄰近下風地區。因此,欲探討北台灣地區臭氧污染之成因,臭氧濃度來源分析是相當重要的一項工作。本研究藉由1994-2005年超過10年之臭氧濃度長期資料分析及2003年全年之臭氧濃度長期模擬,量化與具體說明北台灣地區臭氧污染之季節效應與東亞污染出流之影響。由12年之北台灣地區臭氧濃度發生頻率分析顯示,其濃度分佈有顯著之季節差異,尤其是春季與夏季。此外,介於40-60ppb之臭氧濃度發生頻率於12年間各季皆約有超過ㄧ倍的頻率增加,大於100ppb之臭氧濃度發生頻率則無顯著變化。如此說明,北台灣地區中低濃度與高濃度之臭氧可能有其不同的來源及受到季節效應之影響。
    由2003年之CMAQ全年臭氧模擬結果顯示,模式對於不同之地理區位與季節差異其模擬結果皆有相當的代表性。就臭氧濃度之量值模擬上,整體而言以北台灣地區五個具不同地理區位特性之測站結果分析顯示,其模擬誤差在-7%至15%之範圍內,依不同的模擬情境而定。模擬結果也同時說明,與那國島與恆春測站具有區域性臭氧背景濃度分佈之代表性。
    由基準模擬案例與控制模擬案例之模擬結果相互比較顯示,北台灣地區之臭氧濃度來源可分為三種型態。1.強烈受當地污染源支配之型態(型態一)。2.受東亞污染出流氣團直接影響之型態(型態二)。3.東亞污染出流臭氧濃度墊高北台灣週遭區域之環境背景並伴隨當地污染產生高臭氧事件之型態(型態三)。型態一多發生於部分春季與大多數之夏季,臭氧濃度有強烈之日夜變化,且多有高臭氧事件日發生。型態二常發生於綜觀天氣系統在北台灣週遭為北或東北風之情況,風速高(>5m/s)並伴隨強勁東亞出流氣團於邊界層內之影響,臭氧污染入流直接影響之濃度範圍為50-100ppb。型態三常發生於春季、冬末及初秋,其臭氧濃度加成效果約有20%,受加成影響之臭氧濃度垂直分佈可達2000公尺。
    綜合顯示,東亞污染出流臭氧對北台灣地區之臭氧濃度影響在<100ppb之各濃度分層皆有相當比例的影響,其影響多由一波波氣團的型式到達北台灣地區,如此也說明北台灣地區12年臭氧濃度頻率變化,”東亞污染出流之臭氧濃度”將扮演相當重要的關鍵角色。另一方面,>100ppb之臭氧濃度多由本地污染所貢獻,東亞污染出流臭氧之影響小於10%,然而此影響將可能使臭氧濃度超過小時120ppb之法規標準。在型態三之情況下,春季將有75%的站日數改變,使臭氧濃度由未及法規標準至超過法規標準,夏季則為31%之站日數改變。就季節效應而言,東亞污染出流對北台灣地區春季臭氧濃度影響最大,平均而言有超過30%之影響,對夏季影響最小,低於15%。這也說明,季節差異將是研究北台灣地區臭氧污染相當重要的分類依據。


    Northern Taiwan is in the downwind neighboring area of East Asia so that pollutant outflow from East Asia will have direct impact on the ozone mixing ratio in Taiwan. In a coupled study with long-term ozone observations and one year, CMAQ, regional-scale Chemical Transport Model (CTM) simulations we obtained an understanding of the transport and chemical processes governing seasonal ozone variations and provided quantified estimates of the impact of the outflow.
    We simulated the ozone evolution over Taiwan for one year in 2003. Model results show that it is quite capable in capturing the behavior of ozone observation at different locations. Overall, the error of CMAQ simulation result of ozone mixing ratio is less than 15%, ranging from -7% to 14% for five important stations although the standard deviations can be larger. We found that the Hung-Chen and Yonagunijima stations can represent the characteristic behavior of regional-scale background ozone variation near Taiwan.
    By comparing the simulations with and without East Asia anthropogenic emissions, we found that the variation of ozone mixing ratio in northern Taiwan can be divided into three types: 1. local pollution strongly influences the ozone mixing ratio; 2. significant direct impact on northern Taiwan ozone mixing ratio from Asian continental outflow; 3. Asian continental outflow enhance the mixing ratio of background ozone leading to high ozone episode days in northern Taiwan. Type 1 always happened on local high ozone episodes with wind speeds less than 3 m/s and the wind direction generally from the east or southwest. Type 2 always happened under the influence of East China high pressure systems with dominant wind from the northeast to northern Taiwan and accompanying surface wind speeds greater than 5 m/s and result in the direct impact of having ozone mixing ratio of 50-100 ppb. Type 3 always happened in the spring, late winter and earlier autumn. The background ozone in northern Taiwan will have up to 20% incremental increase from the impact of Asian continental outflow and the vertical distribution of ozone can be affected up to 2000m height.
    Our findings suggest that for the study period high oxidant formation in northern Taiwan is predominantly due to local pollution. However, under type 3 condition, the enhanced ozone mixing ratio over the 1-hr 120ppb ozone regulation limit occurred 52 station days (75% of the total occurrences) in northern Taiwan in the springtime and 23 station days (31% of the total occurrences) in the summer. On the other hand, seasonal variation of ozone mixing ratio over northern Taiwan can be affected by east Asian outflow from around 30% in springtime to less than 15% in the summer.

    中文摘要 I 英文摘要 II 致謝 III 目錄 IV 圖目錄 VI 表目錄 XI 第一章 前言 1 1.1 研究緣起 1 1.2 研究目的 2 第二章 文獻回顧 4 2.1 北台灣地區臭氧污染初論 4 2.2 東亞污染出流臭氧之影響與出流機制 6 2.3 東亞地區臭氧前驅物排放量與時間演變 8 2.4 區域性化學傳輸模式模擬與相關問題 10 2.5 化學傳輸模式於空氣品質探討之模擬策略與影響 14 第三章 北台灣地區臭氧濃度長期趨勢及春季之來源分析 16 3.1 資料來源 16 3.2 北台灣地區高臭氧事件日發生頻率之長期趨勢分析 19 3.3 北台灣地區各季節臭氧濃度頻率分佈長期趨勢 21 3.4 2003年春季北台灣地區臭氧濃度來源特徵分析 24 第四章 CMAQ全年模擬與結果分析 37 4.1 2003年全年區域性三維化學傳輸模式模擬 37 4.2 2003年CMAQ網域四邊界入流臭氧濃度模擬結果分析 43 4.3 2003年北台灣地區臭氧濃度模擬結果評估 44 4.4 2003年台灣週遭區域性背景測站臭氧濃度模擬結果評估 47 4.5 2003年台灣週遭臭氧區域性背景值季節變化特徵 50 第五章 2003年北台灣地區各季臭氧濃度來源特徵分析 54 5.1 不同區位東亞污染出流臭氧濃度影響之季節變化及型態分類 54 5.2 北台灣地區各季臭氧污染來源成因分析 61 第六章 東亞污染出流對北台灣地區各季臭氧濃度之影響分析 118 6.1 各分層臭氧濃度於各季受東亞污染出流臭氧影響程度之比例分析 118 6.2 臭氧月平均濃度受東亞污染出流影響分析 120 6.3 各季基準模擬案例與控制模擬案例臭氧濃度頻率分佈結果比較 122 6.4 東亞污染出流對北台灣地區各季臭氧事件日數影響評估 129 第七章 結論與展望 131 7.1 結論 131 7.2 展望 135 參考文獻 136

    Akimoto, H., D. D. Davis, S. C. Liu, and PEM-WEST(A) Science Team, Atmospheric
    Chemistry of the East Asian Northwest Pacific Region, in The Global
    Atmospheric-Biospheric Chemistry, edited by R. G. Prinn, pp. 71-82, Plenum, New
    York, 1994.
    Akimoto, H., et al. (1996), Long-range transport of ozone in the East Asian Pacific
    rim region, J. Geophys. Res., 101(D1), 1999-2010.
    Appel, K. W., A. B. Gilliland, G. Sarwar, and R. C. Gilliam (2007), Evaluation of the
    Community Multiscale Air Quality (CMAQ) model vesion 4.5: Sensitivities
    impacting model performance Part I-Ozone, Atmospheric Environment, 41,
    9603-9615.
    Atkinson, R. (2000), Atmospheric chemistry of VOCs and NOx, Atmos. Environ., 34,
    2063-2101.
    Balkanski, Y. J., D. J. Jacob, R. Arimoto, and M. A. Kritz (1992), Distribution of
    222Rn over the North Pacific: Implications for continental influences, Journal of
    Atmospheric Chemistry, 14, 353-374.
    Barnard, J. C., et al. (2004), An evaluation of the FAST-J photolysis algorithm for
    predicting NO2 photolysis rates under clear and cloudy sky conditions. Atmos.
    Environ., 38, 3393-3403.
    Berntsen, T., I.S.A. Isaksen, W. C. Wang, and X. Z. Liang (1996), Impact of increased
    anthropogenic emission in Asia on tropospheric ozone and climate: A global 3-D
    model study, Tellus, 48, 13-32.
    Bey, I., D. J. Jacob, J. A. Logan, and R. M. Yantosca (2001), Asian chemical outflow
    to the Pacific in spring: Origins, pathways, and budgets, J. Geophys. Res.,
    106(D19), 23097-23113.
    Bey, I., et al. (2001), Global modeling of tropospheric chemistry with assimilated
    meteorology: Model description and evaluation. J. Geophys. Res., 106(D19), pp.
    23073-23096.
    Browell, E. V., et al. (1996), Large-scale air mass characteristics observed over
    Western Pacific during summertime. J. Geophys. Res., 101(D1), pp. 1691-1712.
    Buhr, M. P., et al. (1996), Trace gas measurements and air mass classification from a
    ground station in Taiwan during the PEM-West A experiment (1991). J. Geophys.
    Res., 101(D1), pp. 2025-2036.
    Carmichael, G. R., I. Uno, M. J. Phadnis, Y. Zhang, and Y. Sunwooet (1998),
    Tropospheric ozone production and transport in the springtime in East Asia, J.
    Geophys. Res., 103(D9), 10649-10671.
    Carmichael, G. R., et al. (2003), Regional-scale chemical transport modeling in
    support of the analysis of observation obtained during the TRACE-P experiment, J.
    Geophys. Res., 108(D21), 8823, doi:10.1029/2002JD003117.
    Chang, C. C., et al. (2005), Effects of reactive hydrocarbons on ozone formation in
    southern Taiwan. Atmos. Environ., 39, 2867-2878.
    Chang, J. S., R. A. Brost, I. S. A. Isaksen, S. Madronich, P. Middleton, W.R.
    Stockwell, and C. J. Walcek, A three-dimensional Eulerian acid deposition
    model: Physical concepts and formulation, J. Geophys. Res., 92, 14,681-14700,
    1987.
    Chang, J. S., et al. (1997), The SARMAP Air Quality Model Final Report, California Environmental Protection Agency. Sacramento, C.A.
    Chang, J. S. (2005), Lectures in Numerical Computation of AQM.
    Chang, K. H., F. T. Jeng, Y. L. Tsai and P. L. Lin (2000), Modeling of long-range
    transport on Taiwan’s acid deposition under different weather conditions, Atmos.
    Environ., 34, 3281-3295.
    Cheng, W. L. (2001), Synoptic weather patterns and their relationship to high ozone
    concentrations in the Taichung Basin. Atmos. Environ., 35, 4971-4994.
    Cheng, W. L., et al. (2002), Wintertime vertical profiles of air pollutants over a
    suburban area in central Taiwan. Atmos. Environ., 36, 2049-2059.
    Chou, C. C. K., S. C. Liu, C. Y. Lin, C. J. Shiu, and K. H. Chang (2006), The trend of
    surface ozone in Taipei, Taiwan, and its causes: Implications for ozone control
    strategies, Atmos. Environ., 40, 3898-3908.
    Cohan, D. S., Y. Hu, and A. G. Russell (2006), Dependence of ozone sensitivity
    analysis on grid resolution. Atmos. Environ., 40, 126-135.
    Crawford, J. H., et al. (1997), Implications of large scale shifts in tropospheric NOx
    levels in the remote tropical Pacific. J. Geophys. Res., 102(D23), pp. 28447-28468.
    Crawford, J., et al. (1997), An assessment of ozone photochemistry in the
    extratropical western North Pacific: Impact of continental outflow during the late
    winter/early spring, J. Geophys. Res., 102(D23), 28469-28487.
    Davis, D. D., et al. (1996), Assessment of ozone photochemistry in the western North
    Pacific as inferred from PEM-West A observation during the fall 1991. J. Geophys.
    Res., 101(D1), pp. 2111-2134.
    Davis, D. D., et al. (2003), An assessment of western North Pacific ozone
    photochemistry based on springtime observations from NASA’s PEM-West B
    (1994) and TRACE-P(2001) field studies, J. Geophys. Res., 108(D21), 8829,
    doi:1029/2002JD003232.
    Dawson, J. P., P. N. Racherla, B. H. Lynn, P. J. Adams, and S. N. Pandis (2008),
    Simulating present-day and future air quality as climate changes: Model evaluation,
    Atmospheric Environment, 42, 4551-4566.
    Dennis, R. L., D. W. Byun, J. H. Novak, K. J. Galluppi, C. J. Coats, and M. A. Vouk
    (1996), The next generation of integrated air quality modeling: EPA’S Models-3,
    Atmospheric Environment Vol. 30, No. 12, pp. 1925-1938.
    Ding, A., et al. (2004), Simulation of sea-land breezes and a discussion of their
    implications on the transport of air pollution during a multi-day ozone episode in
    the Pearl River Delta of China. Atmos. Environ., 38, 6737-6750.
    El-Fadel, M., L. Abi-Esber, and T. Ayash (2009), Managing emissions from highly
    industrialized area: Regulatory compliance under uncertainty, Atmospheric
    Environment, 43, 5015-5026.
    Fang, S. H., and H. W. Chen (1996), Air quality and pollution control in Taiwan.
    Atmos. Environ., 30, 735-741.
    Fiore, A. M., et al. (1998), Long-term trends in ground level ozone over the
    contiguous United States, 1980-1995. J. Geophys. Res., 103(D1), pp. 1471-1480,
    January 20.
    Fiore, A. M., et al. (2002), Background ozone over the United State in summer:
    Origin, trend, and contribution to pollution episodes. J. Geophys. Res., 107(D15),
    4275, doi:10.1029/2001JD000982.
    Gilliam, R. C., C. Hogrefe, and S. T. Rao (2006), New methods for evaluating
    meteorological models used in air quality applications, Atmospheric Environment,
    40, 5073-5086.
    Giorgi, F., and F. Meleux (2007), Modeling the regional effects of climate change on
    air quality, C. R. Geoscience, 339, 721-733.
    Grewe, V. (2007), Impact of climate variability on tropospheric ozone, Science of the
    Total Environment, 374, 167-181.
    Gustafson Jr., W. I., et al. (2005), Triumphs and Tribulations of WRF-Chem
    Development and Use. WRF/MM5 Users’ Workshop - June 2005.
    Guttikunda, S. K., Y. Tang, G. R. Carmichael, G. Kurata, L. Pan, D. G. Streets, J.Woo,
    N. Thongboonchoo, and A. Fried (2005), Impacts of Asian megacity emission on
    regional air quality during spring 2001, J. Geophys. Res., 110(D20301),
    doi:10.1029/2004JD004921.
    Hertel, O. et al. (1993), Test of two numerical schemes for use in atmospheric
    transport-chemistry models. Atmos. Environ., 27A, 2591-2611.
    Hirsch, A. I., et al. (1996), Seasonal variation of the ozone production efficiency per
    unit NOx at Harvard Forest, Massachusetts. J. Geophys. Res., 101(D7), pp.
    12659-12666, MAY 20.
    Hoell, J. M., D. D. Davis, S. C. Liu, R. E. Newell, H. Akimoto, R. J. McNeal, and R.
    J. Bendura (1997), The Pacific Exploratory Mission-West Phase B:
    February-March, 1994, J. Geophys. Res., 102(D23), 28223-28240.
    Hogrefe, C., J. Biswas, B. Lynn, K. Civerolo, J. Y. Ku, J. Rosenthal, C. Rosenzweig,
    R. Goldberg, and P. L. Kinney (2004), Simulating regional-scale ozone climatology
    over the eastern United States: model evaluation results, Atmospheric Environment,
    38, 2627-2638.
    Hogrefe, C., P. S. Porter, E. Gego, A. Gilliland, R. Gilliam, J. Swall, J. Irwin, and S. T.
    Rao (2006), Temporal features in observed and simulated meteorology and air
    quality over the Eastern United States, Atmospheric Environment, 40, 5041-5055.
    Huang, H. C., and J. S. Chang (2001), On the performance of numerical solvers for a
    chemistry submodel in three-dimensional air quality models: 1. Box model
    simulations. J. Geophys. Res., 106(D17), pp. 20175-20188.
    Hudman, R. C., et al. (2004), Ozone production in transpacific Asian pollution plumes
    and implications for ozone air quality in California, J. Geophys. Res.,
    109(D23S10), doi:10.1029/2004JD004974.
    Huebert, B. J., T. Bates, P. B. Russell, G. Shi, Y. J. Kim, K. Kawamura, G. Carmichael,
    and T. Nakajima (2003), An overview of ACE-Asia: Strategies for quantifying the
    relationships between Asian aerosols and their climatic impacts, J. Geophys. Res.,
    108(D23), doi:10.1029/2003JD003550.
    Itano, Y., S. Wakamatsu, S. Hasegawa, T. Ohara, S. Sugata, M. Hayasaki, T. Moriya,
    and S. Kobayashi (2006), Local and regional contributions to springtime ozone in
    the Osaka metropolitan area, estimated from aircraft observations, Atmospheric
    Environment, 40, 2117-2127.
    Jackson, B., D. Chau, K. Gurer, and A. Kaduwela (2006), Comparison of ozone
    simulations using MM5 and CALMET/MM5 hybrid meteorological fields for the
    July/August 2000 CCOS episode, Atmospheric Environment, 40, 2812-2822.
    Jacob, D. J., et al. (1995), Seasonal transition from NOx- to hydrocarbon-limited
    conditions for ozone production over the eastern United States in September. J.
    Geophys. Res., 100(D5), pp. 9315-9324.
    Jacob, D. J., J. H. Crawford, M. M. Kleb, V. S. Connors, R. J. Bendura, J. L. Raper, G.
    W. Sachse, J. C. Gille, L. Emmons, and C. L. Heald (2003), Transport and
    Chemical Evolution over the Pacific (TRACE-P) aircraft mission: Design,
    execution, and first results, J. Geophys. Res., 108(D20), 9000,
    doi:10.1029/2002JD003276.
    Jacobson Z. M. (2005), Fundamentals of Atmospheric Modeling, Cambridge
    University Press.
    Kassomenos, P., et al. (1999), “Air-quality indicators” for uniform indexing of
    atmospheric pollution over large metropolitan areas. Atmos. Environ., 33,
    1861-1879.
    Kato, N. And H. Akimoto (1992), Anthropogenic emissions of SO2 and NOx in Asia:
    Emission inventories, Atmos. Environ., 26A, 2997-3017.
    Ko, M., et al. (2003), Photochemical ozone budget the BIBLE A and B campaigns. J.
    Geophys. Res., 108(D3), 8404, doi:10.1029/2001JD000800.
    Lam, K. S., T. J. Wang, L. Y. Chan, T. Wang, and J. Harris (2001), Flow patterns
    influencing the seasonal behavior of surface ozone and carbon monoxide at a
    coastal site near Hong Kong, Atmospheric Environment, 35, 3121-3135.
    Lam, K. S., et al. (2005), Study on an ozone episode in hot season in Hong Kong and
    transboundary air pollution over Pearl River Delta region of China. Atmos.
    Environ., 39, 1967-1977.
    Lee, S. M., S. C. Yoon, and D. W. Byun (2004), The effect of mass inconsistency of
    the meteorological field generated by a common meteorological model on air
    quality modeling, Atmospheric Environment, 38, 2917-2926.
    Lehning, M., et al. (1998), Vertical exchange and regional budgets of air pollutants
    over densely populated areas. Atmos. Environ., 32, 1353-1363.
    Li, J., Z. Wang, H. Akimoto, C. Gao, P. Pochanart, and X. Wang (2007), Modeling
    study of ozone seasonal cycle in lower troposphere over east Asia, J. Geophys.
    Res., 112, D22S25, doi:10.1029/2006JD008209.
    Li, Q., et al. (2001), A Tropospheric Ozone Maximum Over the Middle East.
    Geophys. Res. Lett., 28(D17), pp. 3235-3238.
    Lin, C. H., et al. (2004), Experimental investigation of ozone accumulation overnight
    during a wintertime ozone episode in south Taiwan. Atmos. Environ., 38,
    4267-4278.
    Lin, C. Y. C., et al. (2000), Increasing background ozone in surface air over the United
    States. Geophys. Res. Lett., 27(D21), pp. 3465-3468.
    Lin, C. Y., C. C. Chang, C. Y. Chan, C. H. Kuo, W. C. Chen, D. A. Chu, and S. C. Liu
    (2009), Characteristics of springtime profiles and sources of ozone in the low
    troposphere over northern Taiwan, Atmospheric Environment, doi:10. 1016.
    Lin, C. Y., S. C. Liu, C. C. K. Chou, T. H. Liu, C. T. Lee, C. S. Yuan, C. J. Shiu, and
    C.Y. Young et al. (2004), Long-range transport of Asian dust and air pollution to
    Taiwan, TAO, 15(5), 759-784.
    Lin, T. Y., L. H. Young, and C. S. Wang (2001), Spatial variations of ground level
    ozone concentrations in areas of different scales. Atmos. Environ., 35, 5799-5807.
    Liu, C. M., M. T. Yeh, S. Paul, Y. C. Lee, D. J. Jacob, M. Fu, J. H. Woo, G. R.
    Carmichael, and D. G. Streets (2008), Effect of anthropogenic emissions in East
    Asia on regional ozone levels during spring cold continental outbreaks near
    Taiwan: A case study, Environmental Modelling & Software, 23, 579-591.
    Liu, H., D. J. Jacob, L. Y. Chan, S. J. Oltmans, I. Bey, R. M. Yantosca, J. M. Harris, B.
    N. Duncan, and R. V. Martin (2002), Sources of tropospheric ozone along the Asian
    Pacific Rim: An analysis of ozonesonde observations, J. Geophys. Res., 107(D21),
    4573, doi:10.1029/2001JD002005.
    Liu, H., D. J. Jacob, I. Bey, R. M. Yantosca, and B. N. Duncan (2003), Transport
    pathways for Asian pollution outflow over the Pacific: Interannual and seasonal
    variations, J. Geophys. Res., 108(D20), 8786, doi:10.1029/2002JD003102.
    Liu, J., D. L. Mauzerall, and L. W. Horowitz (2005), Analysis of seasonal and
    interannual variability in transpacific transport, J. Geophys. Res., 110(D04302),
    doi:10.1029/2004JD005207.
    Liu, M., et al. (2003), A high-resolution numerical study of the Asian dust storms of
    April 2001. J. Geophys. Res., 108(D23), 8653, doi:10.1029/2002JD003178.
    Liu, S. C., et al. (1996), Model study of tropospheric trace species distributions during
    PEM-West A. J. Geophys. Res., 101(D1), pp. 2073-2086.
    Liu, S. C., Lectures in Atmospheric Chemistry, 2006.
    Lorenz, P., and D. Jacob (2005), Influence of regional scale information on the global
    circulation: A two-way nesting climate simulation. Geophys. Res. Lett.,
    32(L18706), doi:10.1029/2005GL023351.
    Lu, H. C., and T. S. Chang (2005), Meteorologically adjusted trends of daily
    maximum ozone concentrations in Taipei, Taiwan. Atmos. Environ., 39, 6491-6501.
    Ma, J., H. Liu, and D. Hauglustaine (2002), Summertime tropospheric ozone over
    China simulated with a regional chemical transport model: 1. Model description
    and evaluation. J. Geophys. Res., 107(D22), 4660, doi:10.1029/2001JD001354.
    Mao, Q., L. L. Gautney, T. M. Cook, M. E. Jacobs, S. N. Smith, and J. J. Kelsoe
    (2006), Numerical experiments on MM5-CMAQ sensitivity to various PBL
    schemes, Atmospheric Environment, 40, 3092-3110.
    Mari, C., M. J. Evans, P. I. Palmer, D. J. Jacob, and G. W. Sachse (2004), Export of
    Asian pollution during two cold front episodes of the TRACE-P experiment, J.
    Geophys. Res., 109(D15S17), doi:10.1029/2003JD004307.
    Mauzerall, D. L., D. Narita, H. Akimoto, L. Horowitz, S. Walters, D. A. Hauglustaine,
    and G. Brasseur (2000), Seasonal characteristics of tropospheric ozone production
    and mixing ratios over East Asia: A global three-dimensional chemical transport
    model analysis, J. Geophys. Res., 105(D14), 17895-17910.
    McKeen, S. A., et al. (1996), Hydrocarbon ratios during PEM-West A: A model
    perspective. J. Geophys. Res., 101(D1), pp. 2087-2110.
    Monks, P. S. (2000), A review of the observations and origins of spring ozone
    maximum, Atmos. Environ., 34, 3545-3561.
    Naja, M. and H. Akimoto (2004), Contribution of regional pollution and long-range
    transport to the Asia-Pacific region: Analysis of long-term ozonesonde data over
    Japan, J. Geophys. Res., 109(D21306), doi:10.1029/2004JD004687.
    Newell, R. E., et al. (1996), Vertical fine-scale atmospheric structure measured from
    NASA DC-8 during PEM-West A. J. Geophys. Res., 101(D1), pp. 1943-1960.
    NRC, Rethinking the Ozone Problem in Urban and Regional Air Pollution, Natl.
    Acad., Washington D. C., 1991.
    Oliver, J. G. J., A. F. Bouwman, J. J. M. Berdowski, C. Veldt, J. P. J. Bloos, A. J. H.
    Visschedijk, C. W. M. Van der Maas, and P. Y. J. Zandveld (1999), Sectoral
    emission inventories of greenhouse gases for 1990 on a per country basis as well as
    1°×1°, Environmental Science & Policy, 2, 241-263.
    Oltmans, S. J., et al. (2004), Tropospheric ozone the North Pacific from ozonesonde
    observations. J. Geophys. Res., 109(D15S01), doi:10.1029/2003JD003466.
    Peleg, M., et al. (1997), Observational evidence of an ozone episode over the
    greater Athens area. Atmos. Environ., 31, 3969-3983.
    Pochanart, P., H. Akimoto, Y. Kinjo, and H. Tanimoto (2002), Surface ozone at four
    remote island sites and the preliminary assessment of the exceedances of its critical
    level in Japan, Atmospheric Environment, 36, 4235-4250.
    Pochanart, P., S. Kato, T. Katsuno, and H. Akimoto (2004), Eurasian continental
    background and regionally polluted levels of ozone and CO observed in northeast
    Asia, Atmospheric Environment, 38, 1325-1336.
    Prather, M., et al. (2003), Fresh air in the 21st century?. Geophys. Res. Lett.,
    30(D21100), doi:10.1029/2002GL016285.
    Raga, G. B., and A. C. Raga (2000), On the formation of an elevated ozone peak in
    Mexico City. Atmos. Environ., 34, 4097-4102.
    Russell, A., and R. Dennis (2000), NARSTO critical review of photochemical models
    and modeling, Atmospheric Environment, 34, 2283-2324.
    Samaali, M., M. D. Moran, V. S. Bouchet, R. Pavlovic, S. Cousineau, and M. Sassi
    (2009), On the influence of chemical initial and boundary conditions on annual
    regional air quality model simulations for North America, Atmospheric
    Environment, 43, 4873-4885.
    Sarrat, C., et al. (2006), Impact of urban heat island on regional atmospheric
    pollution. Atmos. Environ., 40, 1743-1758.
    Seaman, Nelson (2000), Meteorological modeling for air-quality assessments. Atmos. Environ., 34, 2231-2259.
    Seinfeld, J. H., and Pandis, S. N., Atmospheric Chemistry and Physics. Wiley, New
    York, 1998.
    Singh, H. B., et al. (1998), Latitudinal distribution of reactive nitrogen in the free
    troposphere over the Pacific Ocean in late winter/early spring. J. Geophys. Res.,
    103(D21), pp. 28237-28246.
    Smyth, S., et al. (1999), Characterization of the chemical signatures of air masses
    observed during the PEM experiment over the western Pacific. J. Geophys. Res.,
    104(D13), pp. 16243-16254.
    Solomon, P., E. Cowling, G. Hidy, and C. Furiness (2000), Comparison of scientific
    findings from major ozone field studies in North America and Europe, Atmos.
    Environ., 34, 1885-1920.
    Stockwell, W. R., P. Middleton, and J. S. Chang (1990), The second generation
    regional acid deposition model chemical mechanism for regional air quality
    modeling, J. Geophys. Res., 95(D10), 16343-16367.
    Streets, D. G., et al. (2003), An inventory of gaseous and primary aerosol emissions in
    Asia in the year 2000, J. Geophys. Res., 108(D21), 8809,
    doi:10.1029/2002JD003093.
    Szopa, S., and D. A. Hauglustaine (2007), Relative impacts of worldwide tropospheric
    ozone changes and regional emission modifications on European surface-ozone
    levels, C. R. Geoscience, 339, 709-720.
    Tanimoto, H. (2009), Increase in springtime tropospheric ozone at a mountainous site
    in Japan for the period 1998-2006, Atmospheric Environment, 43, 1358-1363.
    Tanimoto, H., H. Furutani, S. Kato, J. Matsumoto, Y. Makide, and H. Akimoto (2002),
    Seasonal cycles of ozone and oxidized nitrogen species in northeast Asia: 1. Impact
    of regional climatology and photochemistry observed during RISOTTO 1999-2000,
    J. Geophys. Res., 107(D24), 4747, doi:10.1029/2001JD001496.
    Tanimoto, H., O. Wild, S. Kato, H. Furutani, Y. Makide, Y. Komazaki, S. Hashimoto,
    S. Tanaka, and H. Akimoto (2002), Seasonal cycles of ozone and oxidized nitrogen
    species in northeast Asia: 2. A model analysis of the roles of chemistry and
    transport, J. Geophys. Res., 107(D23), 4706, doi:10.1029/2001JD001497.
    Tanimoto, H., T. Ohara, and I. Uno (2009), Asian anthropogenic emissions and
    decadal trends in springtime tropospheric ozone over Japan: 1998-2007, Geophys.
    Res. Lett ,vol. 36, L23802, doi:10. 1029.
    Van Aardenne, J. A., G. R. Carmichael, H. LevyⅡ, D. Streets, and L. Hordijk (1999),
    Anthropogenic NOx emissions in Asia in the period 1990-2020, Atmos. Environ.,
    33, 633-646.
    Wang, Y., et al. (2001), Factors controlling tropospheric O3, OH, NOx, and SO2 over
    the tropical Pacific during PEM-Tropics B, J. Geophys. Res., 106(D23),
    32733-32747.
    Weinroth, E., W. Stockwell, D. Koracin, J. Kahyaoglu-Koracin, M. Luria, T. McCord,
    D. Podnar, and A. Gertler (2008), A hybrid model for ozone forecasting,
    Atmospheric Environment, 42, 7002-7012.
    Wild, O., X. Zhu, and M. J. Prather (2000), Fast-J: Accurate simulation of in- and
    below-cloud photolysis in tropospheric chemical models. J. Atmos. Chem., 37,
    245-282.
    Wise, E. K., and A. C. Comrie (2005), Meteorologically adjusted urban air quality
    trends in the Southwestern United States. Atmos. Environ., 39, 2969-2980.
    Wong, H.L.A., T. Wang, A. Ding, D.R. Blake, and J.C. Nam (2007), Impact of Asian
    continental outflow on the concentrations of O3, CO, NMHCs and halocarbons on
    Jeju Island, South Korea during March 2005, Atmospheric Environment, 41,
    2933-2944.
    Yamaji, K., T. Ohara, I. Uno, H. Tanimoto, J. i. Kurokawa, and H. Akimoto (2006),
    Analysis of the seasonal variation of ozone in the boundary layer in East Asia using
    the Community Multi-scale Air Quality model: What controls surface ozone levels
    over Japan, Atmospheric Environment, 40, 1856-1868..
    Yang, K. L. (2002), Spatial and seasonal variation of PM10 mass concentrations in
    Taiwan, Atmos. Environ., 36, 3403-3411.
    Yang, K. L., et al. (2005), Diurnal and seasonal cycles of ozone precursors observed
    from continuous measurement at an urban site in Taiwan. Atmos. Environ., 39,
    3221-3230.
    Zhang, Q., et al. (2009), Asian emissions in 2006 for the NASA INTEX-B mission,
    Atmos. Chem. Phys., 9, 5131-5153.

    QR CODE
    :::