跳到主要內容

簡易檢索 / 詳目顯示

研究生: 洪富城
Fu-Cheng Hung
論文名稱: 採用累增崩潰異質接面光電晶體和衝渡二極體兩種元件來改善增益頻寬積的特性
The Improvement of Gain-Bandwidth Product Performance by Using the Structures of Avalanche Heterojunction Phototransistor and IMPATT-Photodiode
指導教授: 許晉瑋
Jin-Wei Shi
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 89
中文關鍵詞: 異質接面崩潰光電晶體累增崩潰二極體
外文關鍵詞: Avalanche Heterojunction Phototransistor, Avalan
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文研究中,我們提出一個分離式吸收、電荷、增益之異質接面光電晶體。當元件在不犧牲增益特性之下,在磊晶時插入倍增層InAlAs,操作在近崩潰區時,可以大大的減少電子在基-射接面被困住的時間,同時又可產生高輸出頻寬。增益輸出主要是由光導電體和崩潰兩個機制增益(gain)在交互作用,而不用操作高於30 V以上的逆向偏壓,又可得到大於104高增益。元件操作逆向偏壓6 V時,可達到高輸出頻寬(1.6 GHz)以及非常極大高增益頻寬積(90 THz)
    第二,我們又提出了以一個標準的矽基板做成垂直入射的衝渡二體(IMPATT-PD)且操作在830 nm波段有著高速的表現。藉由頻寬共振的效應來改善傳統Avalanch Photodoide(APD)增益頻寬積互相抵換(Trade-off)的問題和矽基板吸光所產生的擴散電流。根據我們元件的模擬和量測結果,與傳統的衝渡二極體非常相似,當逆向偏壓加大,共振頻率也隨著變大。而在不使用Silicon-on-Insulator(SOI)這個昂貴的技術且增益為一的時候外部效率是60 %,可以達到頻寬為(30 GHz)的超高增益頻寬積(690 GHz),同時通過標準規格OC-192,清楚的看到在10 Gbit/s眼圖有開。


    In this thesis, we demonstrate a high-performance heterojunction phototransistor (HPT): separate-absorption-charge-multiplication HPT (SACM-HPT). The incorporation of an In0.52Al0.48As based multiplication layer in the In0.53Ga0.47As based collector layer of our HPT allows for a great shortening of the trapping time (~ns to ~30 ps) of electrons at the base-emitter junction under near avalanche operation, without sacrificing the gain performance. The interaction between the photoconductive gain and avalanche gain means that it is not necessary to use high bias voltages (>30 V) in our device to attain high-gain (>1×104 ) performance. With this device design, we can achieve an extremely high (90THz) gain-bandwidth product (1.6GHz, 5.5×104 ) under a 6 V bias.
    Second, we demonstrate a high-speed Si/SiGe based vertical-illuminated Impact Ionization Avalanche Transit Time Photodiode (IMPATT-PD) on the standard Si substrate operating in the 830nm wavelength regime. The studied andwidth-enhancement (resonant) effect can greatly release the trade-off between gain and bandwidth performance of a traditional APD and screen the slow diffusion current from Si substrate. According to our modeling and measurement results, the extracted internal resonant frequency significantly increases with the reverse leakage current (bias voltage), which is similar to the behavior of a traditional IMPATT diode. By properly choosing the bias voltage, a wide 3-dB bandwidth (30GHz), ultra-high gain-bandwidth product (690GHz) with a 60% external efficiency at unit gain, and a clear eye-opening at 10Gbit/sec, which can pass the OC-192 eye masks, can be achieved simultaneously in our device without using costly silicon-on-insulator (SOI) substrate.

    摘要 I ABSTRACT II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XIII 第一章 導論 1 1-1 光纖通訊的歷史 1 1-2 光纖通訊的應用 4 1-3 論文架構 6 第二章 分離式吸收、電荷、累增之磷化銦異質接面光電晶體的設計原理、製程步驟和量測結果 7 2-1 元件應用 7 2-2 光電晶體基本原理 8 2-3 傳統的光導電體 10 2-4 傳統的雪崩光二極體 11 2-5 分離式吸收、電荷、累增之磷化銦異質接面光電晶體 13 2-5-1 磊晶介紹 13 2-5-2 設計原理 14 2-6 製程步驟 16 2-7 量測結果與討論 23 2-7-1 光波示波器量測系統 23 2-7-2 光電流與增益量測結果 23 2-7-3 頻寬量測結果 25 第三章 分離式吸收、傳輸、電荷、累增之矽鍺雪崩光二極體的設計原理、製程步驟和量測結果 28 3-1 研究背景 28 3-2 元件應用 30 3-3 光二極體基本原理 31 3-4 光二極體的結構分類 33 3-4-1 磊晶結構 33 3-4-2 幾何結構 33 3-5 傳統的PIN光二極體 36 3-6 傳統的矽基底雪崩光二極體 39 3-7 分離式吸收、傳輸、電荷、增益之矽鍺雪崩光二極體 43 3-7-1 磊晶介紹 43 3-7-2 如何消除低頻3dB頻寬衰減而不使用SOI 技術 46 3-7-3 降低因元件操作在崩潰區所產生的3dB頻寬衰減 47 3-8 製程步驟 50 3-9 量測結果與討論 58 3-9-1 光波網路分析儀(光網儀)和眼圖量測系統 58 3-9-2 光電流與光響應度量測結果 59 3-9-3 頻寬量測結果 61 3-9-4 眼圖量測結果 66 第四章 結論 69 參考文獻 70

    [1]http://www.oki.com/en/press/2002/z02059e.htm
    [2]http://www.mfa-optics.com/dor.htm
    [3]http://www.soon-link.com.tw/html/index.htm
    [4]蘇亭林,“矽鍺光電晶體與砷化鎵光電晶體之設計與特性分析”碩士論文, 國立中央大學, 民國93年
    [5]M.N. Abedin, T. F. Refaat, O. V. Sulima, and U. N. Singh, “AlGaAsSb-InGaAsSb HPTs With High Optical Gain and Wide Dynamic Range,” IEEE Trans. on Electron Devices, vol. 51, pp. 2013-2018, Dec., 2004.
    [6]H. Dejun, L. Guohui, Y.-F. Zhang, and E.-J. Zhu, “Ultrahigh-Sensitive AlGaAs-GaAs Punchthrough Heterojunction Phototransistor,” IEEE Photon. Tech. Lett., vol. 9, 1391-1393, Oct., 1997.
    [7]S. Chandrasekhar, M. K. Hoppe, A. G. Dentai, C. H. Joyner, and G. J. Qua, “Deotransistor with a Base Terminal,” IEEE Electron Device Lett., vol. 12, pp. 550-552, Oct. 1991.
    [8]Donald A. Neamen “Semiconductor physics & Device Basic Principle” third edition, 2002.
    [9]Brian F. Aull, Andrew H. Loomis, Douglas J. Young, Richard M. Heinrichs, Bradley J. Felton, Peter J. Daniels, and Deborah J. Landers
    [10]H. Kosaka, A. Tomita, Y. Nambu, T. Kimura and K. Nakamura, “Single-photon interference experimentover 100 km for quantum cryptography system using balanced gated-modephoton detector,” IEEE Elec. Lett., vol. 39, pp. 1199-1201, No. 16, 7th August (2003)
    [11]S. O. Kasap, Optoelectronics and photonics: principles and practices, prentice Hall, 2001
    [12]Andrew S. Huntington*, Madison A. Compton, George M. Williams Voxtel Inc., 12725 SW Millikan Way, Suite 230, Beaverton, OR, USA 97005-1782
    [13]J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent Advances in Avalanche Photodiodes,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 10, pp. 777-787, July/Aug., 2004.
    [14]R. Kuchibhotla, J. C. Campbell, C. Tsai, “InP/InGaAsP/InGaAs SAGM Avalanche Photodiode With Delta-Doped Multiplication Region,” IEEE Electron Lett., vol. 27, pp. 1361-1363, July, 1991
    [15]B. F. Levine, R. N. Sacks, J. Ko, M. Jazwiecki, J. A. Valdmanis, D.Gunther, and J. H. Meier, “A New Planar InGaAs-InAlAs Avalanche Photodiode,” IEEE Photon. Tech. Lett., vol. 15, 1898-1900, Sep., 2006.
    [16]J. C. Campbell, A. G. Dentai, G.-J. Qua, and J. F. Ferguson, “Avalanche InP/InGaAs Heterojunction Phototransistor,” IEEE J. of Quantum Electronics, vol. QE-19, pp. 1134-1138, June, 1983.
    [17]李宗儒,“以矽鍺為材料,用於850nm 短距光纖通訊超高增益頻寬積(428GHz)的累增崩潰光二極體”碩士論文, 國立中央大學, 民國96年
    [18]H. Nie, K. A. Anselm, C. Lenox, P. Yuan, C. Hu, G. Kinsey, B. G. Streetman, and J. C. Campbell, ”Resonant-Cavity Separate Absorption, Charge and Multiplication Avalanche Photodiodes With High-Speed and High Gain-Bandwidth Product,” IEEE Photon. Technol. Lett., vol. 10, pp. 409-411, 1998.
    [19]Yoshio Mita, “Deep-Trench Vertical Si Photodiodes for Improved Efficiency and Crosstalk,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 13, pp. 386-391, 2007.
    [20]Steven J. Koester, ”Ge-on-SOI-Detector/Si-CMOS-Amplifier Receivers for High-Performance Optical-Communication Applications,” IEEE J.Lightwave Technol, vol. 25, pp. 46-57, 2007.
    [21]M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczaurz, ”CMOS-Compatible All-Si High-Speed Waveguide Photodiodes With High Responsivity in Near-Infrared Communication Band,” IEEE Photon. Technol. Lett., vol. 19, pp. 152-154, 2007.
    [22]Zhihong Huang, Ning Kong, Xiangyi Guo, Mingguo Liu, Ning Duan, Ariane L. Beck, Sanjay K. Banerjee, J. C. Campbell, “21-GHz-Bandwidth Germanium-on-Silicon Photodiode Using Thin SiGe Buffer Layers,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 12, pp. 1450-1454, 2006.
    [23]T. Yoshimura, and Y. Koyamada. “Analysis of Transmission Bandwidth characteristicsof SI-POF,” POF-2003 proceedings. P 119, September 15-17,2003 in Seattle.Available from Information Gatekeepers, Inc.
    [24]K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1396-1398, 2000.
    [25]M. Yang, “A High-Speed, High-Sensitivity Silicon Lateral Trench Photodetector,” IEEE Electron Device Lett., vol. 23, pp. 395-397, 2002.
    [26]B. Yang, J. D. Schaub, S. M. Csutak, D. L. Rogers, J. C. Campbell, “10-Gb/s All-Silicon Optical Receiver,” IEEE Photon. Technol. Lett., vol. 15, pp. 745-747, 2003.
    [27]G. Dehlinger, S. J. Koester, J. D. Schaub, J. O. Chu, Q. C. Ouyang, and A. Grill, “High-Speed Germanium-on-SOI Lateral PIN Photodiodes,” IEEE Electron Device Lett., vol. 16, pp. 2547-2549, 2004.
    [28]J. Singh, “Electronic and Optoelectronic Properties of Semiconductor Structure,” CAMBRIDGE UNIVERSITY PRESS, 2003.
    [29]C. Li, “Back-incident SiGe–Si multiple quantum-well resonant-cavity-enhanced photodetectors for 1.3-μm operation,” IEEE Photon. Technol. Lett., vol. 12, pp. 1373–1375, 2000.
    [30]D. Buca, “Fast time response from Si–SiGe undulating layer Supperlatices,” Appl. Phys. Lett., vol. 80, pp. 4172–4174, 2002.
    [31]E. Quinones, S. K. Ray, C. K. Liu, S. Baneriee, “Enhanced mobility PMOSFET’s using tensile-strained Si C layers,” IEEE Electron Device Lett., vol. 20, pp. 338–340, 1999.
    [32]A. R. Hawkins, Ph. D. Thesis, University of California at Santa Barbara, 1998.
    [33]H. Nie, K. A. Anselm, C. Lenox, P. Yuan, C. Hu, G. Kinsey, B. G. Streetman, J. C. Campbell, “Resonant-cavity separate absorption, charge and multiplication avalanche photodiodes with high-speed and high gain-bandwidth product,” IEEE Photon. Technol. Lett., vol. 10, pp. 409–411, 1998.
    [34]Saˇsa Radovanovic´, Member, IEEE, “A 3-Gb/s Optical Detector in Standard CMOS for 850-nm Optical Communication,” IEEE Journal of Solid-State Circuits, vol. 40, no. 8, August 2005.
    [35]S. M. Sze, Physics of Semiconductor Device, John Wiley & Sons, NewYork, 1981.
    [36]M. Tschernitz, J. Freyer, H. Grothe, “GaAs Read-type IMPATT diodes for D-band,” IEEE Electron Lett., vol. 30, pp. 1070-1071, 1994
    [37]Jin-Wei Shi, Yin-Hsin Liu, and Chee-Wee Liu, “Design and Analysis of Separate Absorption-Transport-Charge-Multiplication Traveling-Wave Avalanche Photodetectors,” IEEE J. Lightwave Technol, vol. 22, pp. 1583-1590, 2004
    [38]G. S. Kinsey, J. C. Campbell, and A. G. Dentai, “Waveguide avalanche photodiode operating at 1.55μm with a gain-bandwidth product of 320GHz,” IEEE Photon. Technol. Lett., vol. 13, pp. 842–844, 2001

    QR CODE
    :::