| 研究生: |
吳明富 Ming-Fu Wu |
|---|---|
| 論文名稱: |
含鋁金屬混燒飛灰膨脹特性研究暨預處理穩定化方法評估 Study on expansion characteristics of aluminum-containing co-combustion fly ash and evaluation of pretreatment stabilization method |
| 指導教授: |
黃偉慶
Wei-Hsing Huang |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 150 |
| 中文關鍵詞: | 混燒飛灰 、預處理 、固體再生燃料 、造紙業廢棄物 、廢棄物衍生燃料 |
| 外文關鍵詞: | co-combustion fly ash, pretreatment, solid recovered fuel, paper mill waste, waste-derived fuel |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,氣候變遷所帶來的環保議題持續發展,世界各國陸續提出淨零排放的環保政策,國內能源密集產業紛紛響應2050淨零碳排的目標並著手執行碳中和及能源轉型策略。國內造紙業已率先使用造紙製程廢棄物衍生燃料於廠內流體化床鍋爐與煤混燒,為淨零碳排趨勢下最有效率的能源轉型策略之一。其中,造紙業廢棄物衍生燃料的原料主要為廢紙經散漿機排出之輕質殘渣(廢紙排渣),但廢紙排渣所製成之固體再生燃料(SRF)常殘留鋁箔碎片,進而使燃燒產生的混燒飛灰殘留金屬鋁物質,導致再利用於水泥系材料時產生體積膨脹現象。
本研究針對國內造紙業鍋爐(循環式流體化床鍋爐)共燃SRF/輔助燃料與煤所產出之混燒飛灰進行材料性質分析,探討混燒飛灰應用於水泥材料之膨脹潛勢,研究中藉由金屬鋁與水反應產氫之機理,建立混燒飛灰中可反應性金屬鋁含量之量測方法,可有效量測混燒飛灰金屬鋁含量;此外,並針對金屬鋁粉經不同煆燒溫度後之表面氧化層結構變化,以及於不同鹼性環境下之反應程度探討預處理混燒飛灰之方法,評估預處理穩定化方法對消解混燒飛灰中殘留可反應性金屬鋁之成效,提升混燒飛灰之再利用價值。
研究結果顯示,廢紙排渣與碎漿機排渣所製成SRF與煤混燒所產生之飛灰(SRF(PR)-CCFA及SRF(TP)-CCFA)皆殘留可反應性金屬鋁成分,主要原因為 SRF燃料中殘留金屬鋁物質(鋁箔)無法經由 CFB鍋爐燃燒程序完全氧化。依據混燒飛灰材料特徵及反應,歸納出混燒飛灰中金屬鋁反應機制並提出三種預處理方法:高溫煆燒處理、水浸泡處理、以及水泥固化處理,其成效試驗結果顯示三種預處理方法皆可有效降低混燒飛灰中可反應性金屬鋁含量,進而降低應用於水泥系材料時引致體積膨脹之問題。研究結果有助於更加了解含鋁金屬混燒飛灰之材料特性以及應用於水泥系材料所引致膨脹之反應機理,並對造紙業多種廢棄物衍生燃料於燃燒後所產生之混燒飛灰材料特性家以掌握,並依此提出多種預處理穩定化方法之可能性,為複雜多變之混燒飛灰材料提供更多元應用之途徑。
In recent years, climate change has led to an increase in environmental issues. In an effort to reduce carbon emissions, many countries have implemented policies to promote environmental protection and aim for net-zero emissions. Industries that rely heavily on energy, such as the domestic paper industry, have begun to adopt carbon neutrality and energy transformation strategies to meet the goal of net zero carbon emissions by 2050.Among them, the waste-derived fuel in pulp and paper industry is primarily made up of light residue (waste paper slag) However, the solid recovered fuel (SRF) which was made from waste paper slag, often contains aluminum foil fragments, which can lead to metallic aluminum remain in co-combustion fly ash (CCFA), and can cause expansion on cement product when the CCFA is implemented reuse assignment.
This study aims to analyze the material properties of CCFA produced through domestic pulp and paper industry boilers (CFB boilers), which combustion SRF and coal. To explore the expansion potential of CCFA when it applied to cement materials, a method for measuring the content of reactive metal aluminum in CCFA was established based on the reaction of metal aluminum and water to produce hydrogen. Additionally, the effect of different heat treatment temperatures on the surface oxide layer of metallic aluminum powder and the reaction in different alkaline environments were tested. Discuss and evaluate the effect of pretreatment stabilization methods to enhances the reuse value of CCFA.
The results of this study indicate that SRF made from waste paper slag and pulper residue, as well as fly ash produced by co-firing SRF with coal (SRF(PR)-CCFA and SRF(TP)-CCFA), contain residual reactive aluminum components. This is mainly due to the fact that aluminum foil, which is a metallic aluminum material that remains in SRF fuel and cannot be fully oxidized during the CFB boiler combustion process. To reduce the reactivity of aluminum content in CCFA, three pretreatment methods were proposed based on the characteristics and reactions of the CCFA material: high-temperature calcination treatment, water immersion treatment, and cement curing treatment. The results showed that all three pretreatment methods effectively reduced the content of reactive aluminum in CCFA, thereby reducing the issue of volume expansion caused by the use of fly ash in cementitious materials. The research results contribute to understand the material properties of aluminum-containing CCFA and the mechanism of volume expansion that occurs while using in cementitious materials, and provide a more comprehensive understanding of the characteristics of CCFA derived from various waste fuels in the pulp and paper industry. In addition, various pretreatment and stabilization methods can be proposed for the complex and varied co-fired fly ash material, providing more diverse application pathways.
1. Mlonka-Mędrala, A., T. Dziok, A. Magdziarz, and W. Nowak,“ Composition and properties of fly ash collected from a multifuel fluidized bed boiler co-firing refuse derived fuel (RDF) and hard coal,” Energy, 234, pp. 121229(2021).
2. Wagland, S.T., P. Kilgallon, R. Coveney, A. Garg, R. Smith, P.J. Longhurst, S.J.T. Pollard, and N. Simms,“ Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidised bed reactor,” Waste Management, 31(6), pp. 1176-1183(2011).
3. Wu, H., P. Glarborg, F.J. Frandsen, K. Dam-Johansen, P.A. Jensen, and B. Sander,“ Co-combustion of pulverized coal and solid recovered fuel in an entrained flow reactor – General combustion and ash behaviour,” Fuel, 90(5), pp. 1980-1991(2011).
4. Faleschini, F., M.A. Zanini, K. Brunelli, and C. Pellegrino,“ Valorization of co-combustion fly ash in concrete production,” Materials & Design, 85, pp. 687-694(2015).
5. 行政院環境保護署, 「固體再生燃料製造技術指引與品質規範」, Editor. (2020).
6. 行政院環境保護署, 「固體再生燃料(SRF)相關管理方式」, Editor. (2021).
7. Saffarzadeh, A., N. Arumugam, and T. Shimaoka,“ Aluminum and aluminum alloys in municipal solid waste incineration (MSWI) bottom ash: A potential source for the production of hydrogen gas,” International Journal of Hydrogen Energy, 41(2), pp. 820-831(2016).
8. Aubert, J.E., B. Husson, and N. Sarramone,“ Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement: Part 1: Processing and characterization of MSWI fly ash,” Journal of Hazardous Materials, 136(3), pp. 624-631(2006).
9. Sieradzka, M., P. Rajca, M. Zajemska, A. Mlonka-Mędrala, and A. Magdziarz,“ Prediction of gaseous products from refuse derived fuel pyrolysis using chemical modelling software - Ansys Chemkin-Pro,” Journal of Cleaner Production, 248, pp. 119277(2020).
10. EN 450-1 Fly ash for concrete – Definitions, requirements and quality control. (2012), European Committee for Standardization.
11. Teixeira, E.R., A. Camões, F.G. Branco, J.B. Aguiar, and R. Fangueiro,“ Recycling of biomass and coal fly ash as cement replacement material and its effect on hydration and carbonation of concrete,” Waste Management, 94, pp. 39-48(2019).
12. Bertolini, L., M. Carsana, D. Cassago, A. Quadrio Curzio, and M. Collepardi,“ MSWI ashes as mineral additions in concrete,” Cement and Concrete Research, 34(10), pp. 1899-1906(2004).
13. Nithiya, A., A. Saffarzadeh, and T. Shimaoka,“ Hydrogen gas generation from metal aluminum-water interaction in municipal solid waste incineration (MSWI) bottom ash,” Waste Management, 73, pp. 342-350(2018).
14. Aubert, J.E., B. Husson, and A. Vaquier,“ Metallic aluminum in MSWI fly ash: quantification and influence on the properties of cement-based products,” Waste Management, 24(6), pp. 589-596(2004).
15. 吳佩芬、葛家賢,“ 固態廢棄物衍生燃料技術簡介,” 經濟部工業局工安環保技術報導, 132 (2002).
16. 萬皓鵬、李宏台,“ 廢棄物衍生燃料的使用,” 科學發展, 450(2010).
17. ELLGIA. Processing RDF and SRF Fuel. [https://www.ellgia.co.uk/commercial-waste/our-process/processing-rdf-waste/], (2022).
18. 經濟部工業局, 生質能暨環保產業推動計畫, (2018).
19. 羅國肇,“ 流體化床燃燒爐---由糖炒栗子談起,” 科學發展, 450(2010).
20. 蔡孟原,“ 循環式流體化床鍋爐,” 科學發展, 450(2010).
21. 森展企業有限公司. 鏈條式鍋爐. [https://www.soundbell.com.tw], (2022).
22. 台灣電力公司. 燃煤發電機組. [https://www.taipower.com.tw/tc/page.aspx?mid=216&cid=171&cchk=8ce84ad0-fe9e-46ea-ae27-ad659f90a49a], (2022).
23. He, P., X. Zhang, H. Chen, and Y. Zhang,“ Waste-to-resource strategies for the use of circulating fluidized bed fly ash in construction materials: A mini review,” Powder Technology, 393, pp. 773-785(2021).
24. 經濟部工業局, 區域能資源整合循環回收利用示範輔導計畫, (2022).
25. Cho, B.H., B.H. Nam, J. An, and H. Youn,“ Municipal Solid Waste Incineration (MSWI) Ashes as Construction Materials-A Review,” Materials (Basel), 13(14)(2020).
26. Lokahita, B., K. Yoshikawa, and F. Takahashi,“ Hydrothermal Treatment of Postconsumer Aseptic Packaging Material: Solid Fuel Production and Aluminum Recovery,” Energy Procedia, 105, pp. 610-615(2017).
27. Muñoz-Batista, M.J., G. Blázquez, J.F. Franco, M. Calero, and M.A. Martín-Lara,“ Recovery, separation and production of fuel, plastic and aluminum from the Tetra PAK waste to hydrothermal and pyrolysis processes,” Waste Management, 137, pp. 179-189(2022).
28. Tian, Y., N.J. Themelis, A.C. Bourtsalas, S. Kawashima, and Y. Gorokhovich,“ Systematic Study of the Formation and Chemical/mineral Composition of Waste-to-energy (WTE) Fly Ash,” Materials Chemistry and Physics, 293, pp. 126849(2023).
29. Tian, Y., N.J. Themelis, D. Zhao, A.C. Thanos Bourtsalas, and S. Kawashima,“ Stabilization of Waste-to-Energy (WTE) Fly Ash for Disposal in Landfills or Use as Cement Substitute,” Waste Management, 150, pp. 227-243(2022).
30. Wang, L., H. Quan, and Q. Li,“ Effect of Solid Waste-Petroleum Coke Residue on the Hydration Reaction and Property of Concrete,” Materials, 12(8), pp. 1216(2019).
31. Wang, Y., Y. Zhao, Y. Han, and M. Zhou,“ The Effect of Circulating Fluidised Bed Bottom Ash Content on the Mechanical Properties and Drying Shrinkage of Cement-Stabilised Soil,” Materials, 15(1), pp. 14(2022).
32. Tian, X., F. Rao, C.A. León-Patiño, and S. Song,“ Effects of aluminum on the expansion and microstructure of alkali-activated MSWI fly ash-based pastes,” Chemosphere, 240, pp. 124986(2020).
33. Joseph, A.M., P. Heede, R. Snellings, A. Van Brecht, S. Matthys, and N. De Belie, Comparison of different beneficiation techniques to improve utilization potential of Municipal Solid Waste Incineration fly ash concrete. (2017).
34. Kremser, K., P. Gerl, A.B. Borrás, D.R. Espinosa, B.M. Martínez, G.M. Guebitz, and A. Pellis,“ Bioleaching/enzyme-based recycling of aluminium and polyethylene from beverage cartons packaging waste,” Resources, Conservation and Recycling, 185, pp. 106444(2022).
35. Coker, E.N. The oxidation of aluminum at high temperature studied by Thermogravimetric Analysis and Differential Scanning Calorimetry. (Year) of Conference.
36. Xuan, D. and C.S. Poon,“ Removal of metallic Al and Al/Zn alloys in MSWI bottom ash by alkaline treatment,” Journal of Hazardous Materials, 344, pp. 73-80(2018).
37. Gökelma, M., A. Vallejo-Olivares, and G. Tranell,“ Characteristic properties and recyclability of the aluminium fraction of MSWI bottom ash,” Waste Management, 130, pp. 65-73(2021).
38. Saikia, N., G. Mertens, K. Van Balen, J. Elsen, T. Van Gerven, and C. Vandecasteele,“ Pre-treatment of municipal solid waste incineration (MSWI) bottom ash for utilisation in cement mortar,” Construction and Building Materials, 96, pp. 76-85(2015).
39. Gai, W.-Z., W.-H. Liu, Z.-Y. Deng, and J.-G. Zhou,“ Reaction of Al powder with water for hydrogen generation under ambient condition,” International Journal of Hydrogen Energy, 37(17), pp. 13132-13140(2012).
40. Xiao, F., R. Yang, and Z. Liu,“ Active aluminum composites and their hydrogen generation via hydrolysis reaction: A review,” International Journal of Hydrogen Energy, 47(1), pp. 365-386(2022).
41.Mary Joseph, A., R. Snellings, P. Nielsen, S. Matthys, and N. De Belie,“ Pre-treatment and utilisation of municipal solid waste incineration bottom ashes towards a circular economy,” Construction and Building Materials, 260, pp. 120485(2020).
42.Brown, L.J., F.-X. Collard, and J. Görgens,“ Pyrolysis of fibre residues with plastic contamination from a paper recycling mill: Energy recoveries,” Energy Conversion and Management, 133, pp. 110-117(2017).
43.Brown, L.J., F.X. Collard, L.D. Gottumukkala, and J. Görgens,“ Fermentation-pyrolysis of fibre waste from a paper recycling mill for the production of fuel products,” Waste Management, 120, pp. 364-372(2021).
44.Monte, M.C., E. Fuente, A. Blanco, and C. Negro,“ Waste management from pulp and paper production in the European Union,” Waste Management, 29(1), pp. 293-308(2009).
45.Tsai, M.-Y., K.-T. Wu, C.-C. Huang, and H.-T. Lee,“ Co-firing of paper mill sludge and coal in an industrial circulating fluidized bed boiler,” Waste Management, 22(4), pp. 439-442(2002).
46.Wan, H.-P., Y.-H. Chang, W.-C. Chien, H.-T. Lee, and C.C. Huang,“ Emissions during co-firing of RDF-5 with bituminous coal, paper sludge and waste tires in a commercial circulating fluidized bed co-generation boiler,” Fuel, 87(6), pp. 761-767(2008).
47.CNS 3036, 「混凝土用燃煤飛灰及未煆燒或煆燒天然卜作嵐材料」. (2021), 中華民國國家標準(CNS).
48.CNS 1078, 「水硬性水泥化學分析法」. (2020), 中華民國國家標準(CNS).
49.Haile, A., G.G. Gelebo, T. Tesfaye, W. Mengie, M.A. Mebrate, A. Abuhay, and D.Y. Limeneh,“ Pulp and paper mill wastes: utilizations and prospects for high value-added biomaterials,” Bioresources and Bioprocessing, 8(1), pp. 35(2021).
50.Corinaldesi, V., G. Fava, and M. Ruello, Paper mill sludge ash as supplementary cementitious material. (2010).
51.Kim, Y.B., Y.R. Gwak, S.I. Keel, J.H. Yun, and S.H. Lee,“ Direct desulfurization of limestones under oxy-circulating fluidized bed combustion conditions,” Chemical Engineering Journal, 377, pp. 119650(2019).
52.Li, D., X. Ke, M. Kim, R. Cai, H. Yang, M. Zhang, and C.-h. Jeon,“ Attrition and product layer development of limestone during simultaneous calcination and sulfation in a fluidized bed reactor,” Fuel, 293, pp. 120280(2021).
53.Córdoba, P.,“ Status of Flue Gas Desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs,” Fuel, 144, pp. 274-286(2015).
54.Harish, P. Kumar, B. Malhotra, P. Phalswal, P.K. Khanna, A. Salim, R. Singhal, and A.K. Mukhopadhyay,“ Effect of reaction rate on the properties of chemically synthesized calcium hydroxide nanoparticles,” Materials Today: Proceedings, 28, pp. 2305-2310(2020).
55.de Castro, R.d.P.V., J.L. de Medeiros, O.d.Q.F. Araújo, M. de Andrade Cruz, G.T. Ribeiro, and V.R. de Oliveira,“ Fluidized bed treatment of residues of semi-dry flue gas desulfurization units of coal-fired power plants for conversion of sulfites to sulfates,” Energy Conversion and Management, 143, pp. 173-187(2017).
56.Navarrete, I., F. Vargas, P. Martinez, A. Paul, and M. Lopez,“ Flue gas desulfurization (FGD) fly ash as a sustainable, safe alternative for cement-based materials,” Journal of Cleaner Production, 283, pp. 124646(2021).
57.Lagosz, A. and J. Malolepszy,“ Tricalcium aluminate hydration in the presence of calcium sulfite hemihydrate,” Cement and Concrete Research, 33(3), pp. 333-339(2003).
58.Kanehira, S., S. Kanamori, K. Nagashima, T. Saeki, H. Visbal, T. Fukui, and K. Hirao,“ Controllable hydrogen release via aluminum powder corrosion in calcium hydroxide solutions,” Journal of Asian Ceramic Societies, 1(3), pp. 296-303(2013).
59.Macanás, J., L. Soler, A.M. Candela, M. Muñoz, and J. Casado,“ Hydrogen generation by aluminum corrosion in aqueous alkaline solutions of inorganic promoters: The AlHidrox process,” Energy, 36(5), pp. 2493-2501(2011).
60.Souza, A.D.V., L.L. Sousa, L. Fernandes, P.H.L. Cardoso, and R. Salomão,“ Al2O3–Al(OH)3-Based castable porous structures,” Journal of the European Ceramic Society, 35(6), pp. 1943-1954(2015).
61.Xu, N., Y. Li, S. Li, H. Wang, R. Xiang, and S. Ouyang,“ Controlled morphologies and hydration process of hydratable alumina by using citric acid,” Journal of the Australian Ceramic Society, 56(4), pp. 1427-1433(2020).
62.Souza, A.D.V., C.C. Arruda, L. Fernandes, M.L.P. Antunes, P.K. Kiyohara, and R. Salomão,“ Characterization of aluminum hydroxide (Al(OH)3) for use as a porogenic agent in castable ceramics,” Journal of the European Ceramic Society, 35(2), pp. 803-812(2015).