跳到主要內容

簡易檢索 / 詳目顯示

研究生: 葉提
Yitea Seneshaw Seneshaw
論文名稱: 伊索比亞的阿瓦什河流域之氣候變化和乾旱特徵
Climate Change and Drought Characteristics in the Awash River Basin, Ethiopia
指導教授: 李明旭
Ming-Hsu Li
口試委員:
學位類別: 博士
Doctor
系所名稱: 地球科學學院 - 水文與海洋科學研究所
Graduate Instittue of Hydrological and Oceanic Sciences
論文出版年: 2020
畢業學年度: 109
語文別: 英文
論文頁數: 149
中文關鍵詞: 降雨量變化變化點檢測趨勢分析乾旱爆發式乾旱
外文關鍵詞: Trend analysis, Droughts, Flash droughts, WSD, SRES; RCPs, HBV model, SPI, EDDI, SPEI
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 阿瓦什河流域(ARB)的農業生產主要依賴天然降水。降雨異常的影響將使農業生產力下降與缺水,甚至造成糧食危機,這些都越來越嚴峻。近年來,ARB的降雨在空間和時間上都出現更加頻繁與強烈的異常。分析降雨變化和趨勢,將有助於提高農業生產管理效率。在ARB中進行了1986-2016年期間29個氣象站的溫度和降雨變化點檢測分析,包含馮·諾伊曼比率,佩蒂特氏,比尚範圍(BR)和標準正態均勻性(SNH)以及曼恩·肯德爾趨勢測試(MK),。並使用五個乾旱指數來探討2002-2017年期間頻繁的乾旱現象,這五個乾旱指數分別是儲水赤字指數(WSDI),蒸發應力指數(ESI),標準降水蒸散指數(SPEI), 標準降水指數(SPI)和蒸發需求乾旱指數(EDDI)。此外,也使用HydrologiskaByrånsVattenbalans-avdelning(HBV)模式搭配六種氣候情景(ECHAM-A2,IPSL-A2,IPSL-RCP4.5,MPI-RCP4.5,MPI- RCP8.5,IPSL-RCP8.5)評估2021-2050年及2071-2100年之水文循環變化。
    在整個ARB的MK趨勢測試顯示,溫度的年和季節尺度是顯著增加。在2001/02年和1997/98年分別檢測到主要雨季(MRS)(6月至9月)和次要雨季(mRS)(2月至5月)的溫度變化點。對於降雨,ARB的下游部分變化很大,並且趨勢和均值變化明顯減少。BR和SNH的測試結果顯示,mRS降雨變化點在1997/98年,隨後每年減少52.5 mm。每年和MRS期間降雨的增加(或減少)與聖嬰(ElNiño)事件有高度關聯。mRS中降雨的顯著下降趨勢和變化點與印度洋和大西洋的持續變暖,局部變暖以及反聖嬰事件有關, ARB的降雨異常對該地區的農業構成了嚴峻挑戰。因此,至關重要的是,在ARB,特別是在下游地區,建立適當的綜合水管理和儲水技術。
    從2002年至2017年的MK檢驗發現,年度和季節性陸地儲水量指數(TWS)顯著增加,這有利於流域的灌溉和其他經濟活動。根據儲水不足指數(WSD),在2005 / 01-2006 / 03中發現了持續15個月的最嚴重乾旱,總WSD為-411.8 mm,2005/03年的峰值不足指數為-46.24 mm,表明流域總TWS極度短缺。使用SPI,ESI,SPEI和EDDI,可檢測在2002、2008-2009年、2012-2013年和2015年的持續乾旱,而乾旱的嚴重性(強度)在2009之後比以前降低。除了一般的乾旱外,還使用ESI和EDDI指數在ARB中檢查了爆發式乾旱。因此,ARB的農業用地,草地,植被覆蓋的地區和沿河的灌溉耕地容易出現乾旱。與ESI相比,使用EDDI檢測到的爆發式乾旱程度更大,因為ESI依賴於土壤水分和植被覆蓋度。發現下游流域特別是在MRS和mRS的最後兩個月中,極易遭受此類型乾旱。EDDI可以及早發現爆發式乾旱的開始,可以將其用作預警,以最大程度地減少流域內農業作物的損失和與乾旱有關的風險。總體而言,3個月和6個月的乾旱指數可以最好地預測ARB的氣象和農業乾旱狀況。
    高人口密度,多樣化的生態以及上游ARB(MK子盆地)以天然降水為主的農業,氣候影響分析對該地區至關重要。所有GCM下溫度的升高會增加蒸發散量,造成MK盆地的水分流失。然而,最低溫度的升高可以減少作物的冷害。所有GCM(不包括ECHAM-A2)下的年降雨量和MRS降雨量和流量都會增加。使用RCP8.5,在近期(2021-2050)和遠期(2071-2100)期間的年降雨量分別增加38%和57%;在近期(2021-2050)和遠期(2071-2100)期間,流量預計分別增長23%和49%。大多數GCM的推估流量增加將提高8月的洪災風險,而ECHAM-A2的流量減少將加劇現有的水資源短缺,特別是在mRS中。總體而言,MRS期間的儲水規劃對減少乾季缺水的影響至關重要。這些發現將有助於該盆地的社區和水資源管理者建立適當的調適措施,以進行有效的水資源管理。


    The community's livelihood in the Awash River basin (ARB) is mainly reliant on rainfall-dependent agriculture. Effects of rainfall anomalies such as reduction of agricultural productivity, water scarcity, and food insecurity are becoming more prevalent in this area. In recent years, the ARB experienced more frequent and intense spatio-temporal rainfall anomalies, which make the shift and trend analyses of rainfall associated with sea surface temperature crucial for providing guidance to improve food security. Change-point detection tests (e.g., the von Neumann ratio, Pettit's, the Buishand's Range (BR), and the Standard Normal Homogeneity (SNH)), and the Mann-Kendall trend-test analysis (M-K) of temperature and rainfall were carried out for the ARB from 29 meteorological stations during the period 1986-2016. The frequent drought reoccurrences were also characterized using five drought indices, including the Water Storage Deficit Index (WSDI), the Evaporative Stress Index (ESI), the Standardized Precipitation Evapotranspiration Index (SPEI), the Standardized Precipitation Index (SPI), and the Evaporative Demand Drought Index (EDDI) during the period 2002-2017. Moreover, the impact of climate change on the hydrology of upstream ARB was assessed by Hydrologiska Byråns Vattenbalans-avdelning (HBV) model using six scenarios during 2021-2050 and 2071-2100.
    The M-K trend test over the entire ARB showed a significant increasing trend in annual and seasonal temperature. Temperature change-points for the major rainy season (MRS) (June-September) and the minor rainy season (mRS) (February-May) were detected in 2001/02 and 1997/98, respectively. For rainfall, the downstream part of the ARB experienced high variability, significant decreasing trend, and shift in mean values. The BR and SNH test results showed that the mRS rainfall change-point was around 1997/98, with a subsequent annual decrease of 52.5 mm/yr. The increase (decrease) of rainfall in the annual and MRS periods is attributed to effects of the La Niña (El Niño) events. The significant decreasing trend and change-point of rainfall in the mRS is associated to the steady warming of the Indian and Atlantic Oceans, local warming, and the La Niña events, which explained that rainfall anomalies in the ARB are posing a serious challenge to agriculture productions in the area. It is therefore essential that appropriate integrated water management and water-harvesting technologies should be established in the ARB, especially in the downstream areas.
    The M-K test from 2002 to 2017 detected a significant increase in annual and seasonal terrestrial water storage (TWS), which is advantageous to irrigation management and other increasing economic activities in the basin. Based on water storage deficit (WSD), the most severe drought that lasted for 15 months was detected around 2005/01-2006/03 with a total WSD of -411.8 mm with a peak deficit of -46.24 mm in 2005/03, indicating an extreme shortage of TWS in the basin. Persistent droughts were identified in 2002, 2008-2009, 2012-2013, and 2015 by SPI, ESI, SPEI, and EDDI, showing less intensified drought after 2009. In addition to the conventional drought, flash drought was also examined in ARB using ESI and EDDI indices. Results showed agricultural/grass-lands, vegetation, and irrigational cropland areas were prone to flash drought in ARB. The extent of flash drought detected by the EDDI was more extensive as compared to those by the ESI due to soil moisture and vegetation coverages were considered in the ESI. The downstream part was found to be highly susceptible to flash drought, especially in the MRS and the last two months of mRS. The EDDI can early detect the start of the flash drought, which can be used as an early warning precursor to support the planning of adaption measures to reduce agricultural crop losses and drought-related risks in the basin. Overall, the 3- and 6-monthly drought indices can best predict the onset and severity of meteorological and agricultural droughts in ARB.
    Considering impacts of climate change, the upstream ARB (MK subbasin) is highly vulnerable due to high population density, diverse ecology, and mainly rainfed agriculture. The projected increase in temperature under all GCMs considered in this study will increase the evapotranspiration that induces more water loss in MK subbasin. Nevertheless, the risk of crop chilling damage will be reduced as the projected increase in minimum temperature. The annual and MRS rainfall and streamflow are projected to increase by all GCMs, excluding ECHAM-A2. Under RCP8.5 scenarios, annual rainfall (streamflow) is expected to increase by 38% (23%) and 57% (49%) during 2021-2050 and 2071-2100, respectively. The projected streamflow increase by most of the GCMs may increase flood risk mainly in August, while the streamflow decrease by ECHAM-A2 will exacerbate the existing water shortage, especially in the mRS. Overall, water harvesting during the MRS would be vital to minimizing the adverse effects. These findings will help the community and water managers of the subbasin to establish suitable adaptation measures for viable water resources management

    摘 要 …………………………………………………………………………………………….i Abstract iii Acknowledgements v Table of Contents vii List of Figures ix List of Tables xii List of Acronyms and Symbols xiii Chapter 1 Introduction 1 1.1 Overview 1 1.2 Motivation and Objectives 1 1.2.1 Motivation 1 1.2.2 Objectives 4 1.3 Literature Review 4 1.3.1 Climate Variability 4 1.3.2 Drought 6 1.3.3 Climate Change 10 1.4 Dissertation Structure 15 Chapter 2 Study Area 16 2.1 Awash River Basin (ARB) 16 2.1.1 Description of ARB 16 2.1.2 Hydro-climate of ARB 17 2.1.3 Land Use Land Cover and Soil Types of ARB 19 2.2 Melka Kuntrie (MK) Subbasin 21 2.2.1 Description of MK 21 2.2.2 Hydro-climate of MK 21 2.2.3 Land Use Land Cover and Soils Types of MK 23 Chapter 3 Trend and Change-Point Detection analysis of Rainfall and Temperature in Awash River Basin. 24 3.1 Introduction 24 3.2 Datasets 25 3.3 Methodology 25 3.3.1 Tests for change-point detection 25 3.3.2 Tests for trend analyses and coefficients of variation (CV) 27 3.3.3 Principal Component Analysis (PCA) 27 3.4 Results and discussion 28 3.4.1 Trend and CV analysis of temperature and rainfall 28 3.4.2 Change-point detection tests of temperature and rainfall 34 3.4.3 The influence of elevation on the Awash river basin’s rainfall 39 3.4.4 The influence of climate indexes in ARB rainfall 40 Chapter 4 Characterizing Drought in Awash River Basin Using GRACE Terrestrial Water Storage and MODIS Datasets 47 4.1 Introduction 47 4.2 Datasets 48 4.2.1 GRACE Data 48 4.2.2 MODIS data 48 4.2.3 Observed Meteorological datasets 50 4.3 Drought Indicators 52 4.3.1 GRACE- based Water Storage Deficit Index (WSDI) 52 4.3.2 Standardized Precipitation Index (SPI) 52 4.3.3 Standardized Precipitation Evapotranspiration Index (SPEI) 53 4.3.4 Evaporative Stress Index (ESI) 54 4.3.5 Evaporative Demand Drought Index (EDDI) 54 4.3.6 Flash Drought Identification 55 4.4 Results and discussion 56 4.4.1 Spatial-temporal variation, and trends of TWSA 56 4.4.3 Comparison between TWSA and SPI at a different time scale 61 4.4.4 Comparison of WSDI with ENSO and commonly used drought indices 63 4.4.5 Correlation between WSDI, SPI, SPEI, ESI, EDDI, and ENSO 68 4.4.6 Drought indices comparison based on duration and severity 70 4.4.7 Evaluating flash drought using ESI and EDDI 76 Chapter 5 Climate Change Impact Assessment on Hydrology of Melka Kuntrie Subbasin, Awash River Basin 82 5.1 Introduction 82 5.2 Data 82 5.3 HBV hydrological model 85 5.4 Results 89 5.4.1 Calibration and Validation of HBV 89 5.4.2 Climate Change Impact Assessment 90 5.5 Discussions 100 Chapter 6 Conclusions and Future Works 104 6.1 Trend and change-point detection of rainfall and temperature in Awash River Basin, Ethiopia 105 6.2 Characterizing drought in Awash River Basin using GRACE and MODIS Datasets 106 6.3 Climate Change Assessment on Hydrology of Melka Kuntrie Subbasin, Awash River Basin 108 6.4 Recommendations and Future works 109 References 1 Appendix 15

    Abbasi, A., Khalili, K., Behmanesh, J., Shirzad, A. 2019. Drought monitoring and prediction using SPEI index and gene expression programming model in the west of Urmia Lake. Theoretical and Applied Climatology, 138(1-2), 553–567. https://doi.org/10.1007/s00704-019-02825-9
    Abtew, W., Melesse, A. M., Dessalegne, T., 2009. El Niño NiNiño Southern Oscillation link to the Blue Nile River Basin hydrology. Process, 23, 3653–3660. https://doi.org/10.1002/hyp.7367
    Abiy, A. Z., Melesse, A. M., Seyoum, W. M., Abtew, W. 2019. Drought and climate teleconnection and drought monitoring. In Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation and Mitigation (pp. 275–295). Elsevier. https://doi.org/10.1016/B978-0-12-815998-9.00022-1
    Adeba, D., Kansal, M. L., Sen, S., 2015. Assessment of water scarcity and its impacts on sustainable development in Awash basin, Ethiopia. Sustainable Water Resources Management, 1(1), 71–87. https://doi.org/10.1007/s40899-015-0006-7
    AghaKouchak, A., Farahmand, A., Melton, F. S., Teixeira, J., Anderson, M. C., Wardlow, B. D., Hain, C. R. 2015. Remote sensing of drought: Progress, challenges and opportunities. Reviews of Geophysics. Blackwell Publishing Ltd. https://doi.org/10.1002/2014RG000456
    AghaKouchak, A. 2015. A multivariate approach for persistence-based drought prediction: Application to the 2010-2011 East Africa drought. Journal of Hydrology, 526, 127–135. https://doi.org/10.1016/j.jhydrol.2014.09.063
    Aghakouchak, A. Habib, E., 2010. Application of a conceptual hydrologic model in teaching hydrologic processes. International Journal of Engineering Education, 26(4 (S1)), pp.963-973. http://amir.eng.uci.edu/publications/10_EduHBV_IJEE.pdf(Accessed, 2019-09-12)
    Agutu, N. O., Awange, J. L., Ndehedehe, C., Mwaniki, M. 2019. Consistency of agricultural drought characterization over Upper Greater Horn of Africa (1982-2013): Topographical, gauge density, and model forcing influence. Science of The Total Environment, 135149. https://doi.org/10.1016/j.scitotenv.2019.135149
    Ahmed, M., Sultan, M., Wahr, J., Yan, E. 2014. The use of GRACE data to monitor natural and anthropogenic induced variations in water availability across Africa. Earth-Science Reviews. Elsevier. https://doi.org/10.1016/j.earscirev.2014.05.009
    Anderson, M. C., Hain, C., Wardlow, B., Pimstein, A., Mecikalski, J. R., & Kustas, W. P. 2011. Evaluation of Drought Indices Based on Thermal Remote Sensing of Evapotranspiration over the Continental United States. Journal of Climate, 24(8), 2025–2044. https://doi.org/10.1175/2010JCLI3812.1
    Anderson, M. C., Zolin, C. A., Sentelhas, P. C., Hain, C. R., Semmens, K., Tugrul Yilmaz, M., … Tetrault, R. 2016. The Evaporative Stress Index as an indicator of agricultural drought in Brazil: An assessment based on crop yield impacts. Remote Sensing of Environment, 174, 82–99. https://doi.org/10.1016/j.rse.2015.11.034
    Ayele, H.S.; Li, M.-H.; Tung, C.-P.; Liu, T.-M. 2016. Impact of Climate Change on Runoff in the Gilgel Abbay Watershed, the Upper Blue Nile Basin, Ethiopia. Water, 8, 380. https://doi.org/10.3390/w8090380.
    Ayele, H.S.; Li, M.-H.; Tung, C.-P.; Liu, T.-M. 2016. Assessing climate change impact on Gilgel Abbay and Gumara watershed hydrology, the upper Blue Nile basin, Ethiopia. Terr. Atmos. Ocean. Sci., 27, 1005–1018., doi:10.3319/TAO.2016.07.30.01.
    Ayele, G. T., Tebeje, A. K., Demissie, S. S., Belete, M. A., Jemberrie, M. A., Teshome, W. M.,Teshale, E. Z., 2018. Time Series Land Cover Mapping and Change Detection Analysis Using Geographic Information System and Remote Sensing, Northern Ethiopia. https://doi.org/10.1177/1178622117751603
    Asfaw.B.,H , Essen.P,.V, Tsige. Z. T.2014. Integrated Water Resource Management Upper Awash River Basin, Central Ethiopia. http://www.waterethiopia.org/wp-content/uploads/2014/03/Background-Information-for-a-Program-Approach-Challenges-and-Possible-Cooperation-between-Dutch-and-Ethiopian-counterparts.pdf (Accessed, 2019-09-12).
    Asfaw, A., Simane, B., Hassen, A., Bantider, A., 2018. Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather and Climate Extremes, 19, 29–41. https://doi.org/10.1016/J.WACE.2017.12.002
    Arsiso, K.B., Mengistu, T.G., Stoffberg, G. H., Tadesse, T. 2017. Climate change and population growth impacts on surface water supply and demand of Addis Ababa, Ethiopia. Climate Risk Management, 18, 21–33. https://doi.org/10.1016/J.CRM.2017.08.004
    Alemayehu, A., Bewket, W., 2017. Local spatiotemporal variability and trends in rainfall and temperature in the central highlands of Ethiopia. Geografiska Annaler: Series A, Physical Geography, 99(2), 85–101. https://doi.org/10.1080/04353676.2017.1289460
    Bayissa, Y. A. 2018. Developing an impact-based combined drought index for monitoring crop yield anomalies in the Upper Blue Nile Basin, Ethiopia. CRC Press. Ph.D. thesis, Delft University of Technology, The Netherlands (accessed July 4, 2020)
    Bachmair, S., Stahl, K., Collins, K., Hannaford, J., Acreman, M., Svoboda, M., Overton, I. C. 2016. Drought indicators revisited: the need for a wider consideration of environment and society. Wiley Interdisciplinary Reviews: Water, 3(4), 516–536. https://doi.org/10.1002/wat2.1154
    Basara, J. B., and J. I. Christian, 2018: Seasonal and interannual variability of land-atmosphere coupling across the Southern Great Plains of North America using the North American regional reanalysis. Int. J. Climatol., 38, 964–978, https:// doi.org/10.1002/joc.5223.
    Belayneh, A., Adamowski, J., Khalil, B., Ozga-Zielinski, B. 2014. Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural networks and wavelet support vector regression models. Journal of Hydrology, 508, 418–429.
    Beguería, S., Vicente-Serrano, S. M., Reig, F., Latorre, B. 2014. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International Journal of Climatology, 34(10), 3001–3023. https://doi.org/10.1002/joc.3887
    Bekele, D.; Alamirew, T.; Kebede, A.; Zeleke, G.; M.; Melesse, A.2018. Modeling Climate Change Impact on the Hydrology of Keleta Watershed in the Awash River Basin, Ethiopia. Environ. Model. Assess., 24, 95–107. https://doi.org/10.1007/s10666-018-9619-1.
    Bekele, D., Alamirew, T., Kebede, A., Zeleke, G., Melese, A. M., 2017. Analysis of rainfall trend and variability for agricultural water management in Awash River Basin, Ethiopia. Journal of Water and Climate Change, 8(1), 127–141. https://doi.org/10.2166/wcc.2016.044
    Berhe, F. T., Melesse, A. M., Hailu, D., Sileshi, Y. 2013. MODSIM-based water allocation modeling of Awash River Basin, Ethiopia. Catena, 109, 118–128. https://doi.org/10.1016/j.catena.2013.04.007
    Besada, H.; Werner, K. 2015. An assessment of the effects of Africa’s water crisis on food security and management. Int J Water Resour Dev, 31(1), 120–133. https://doi.org/10.1080/07900627.2014.905124
    Beyene, T.; Lettenmaier, D.P.; Kabat, P.2010. Hydrologic impacts of climate change on the Nile River Basin: Implications of the 2007 IPCC scenario.Clim. Chang, 100, 433-461. https://doi.org/10.1007/s10584-009-9693-0.
    Bisai, D., Chatterjee, S., Khan, A., B. N., 2014. Statistical Analysis of Trend and Change-point in Surface Air Temperature Time Series for Midnapore Weather Observatory, West Bengal, India. Journal of Waste Water Treatment and Analysis, 05(02). https://doi.org/10.4172/2157-7587.1000169
    Buishand, T. A.,1982. Some methods for testing the homogeneity of rainfall records. Journal of Hydrology, 58(1-2), 11-27. https://doi.org/10.1016/0022-1694(82)90066-X
    Borgomeo, E., Vadheim, B., Woldeyes, F. B., Alamirew, T., Tamru, S., Charles, K. J.,Walker, O., 2018. The Distributional and Multi-Sectoral Impacts of Rainfall Shocks: Evidence From Computable General Equilibrium Modelling for the Awash Basin, Ethiopia. Ecological Economics, 146, 621–632. https://doi.org/10.1016/J.ECOLECON.2017.11.038
    Bergstrom, S.; Harlin, J.; Lindstrom, G.1992. Spillway design floods in Sweden: I. New guidelines. Hydrol. Sci. 37(5), 505–519. https://doi.org/10.1080/02626669209492615
    Cammalleri, C., Barbosa, P., Vogt, J. V. 2019. Analysing the Relationship between Multiple-Timescale SPI and GRACE Terrestrial Water Storage in the Framework of Drought Monitoring. Water, 11(8), 1672. https://doi.org/10.3390/w11081672
    Chen, J. L., Wilson, C. R., Tapley, B. D., Yang, Z. L., Niu, G. Y. 2009. 2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models. Journal of Geophysical Research, 114(B5), B05404. https://doi.org/10.1029/2008JB006056
    Christian, J. I., Basara, J. B., Otkin, J. A., Hunt, E. D., Wakefield, R. A., Flanagan, P. X., Xiao, X. 2019. A Methodology for Flash Drought Identification: Application of Flash Drought Frequency across the United States. Journal of Hydrometeorology, 20(5), 833–846. https://doi.org/10.1175/JHM-D-18-0198.1
    Christian, J. I., Basara, J. B., Otkin, J. A., Hunt, E. D. 2019. Regional characteristics of flash droughts across the United States. Environmental Research Communications, 1(12), 125004. https://doi.org/10.1088/2515-7620/AB50CA
    Choi, M., Jacobs, J. M., Anderson, M. C., Bosch, D. D. 2013. Evaluation of drought indices via remotely sensed data with hydrological variables. Journal of Hydrology, 476, 265–273. https://doi.org/10.1016/j.jhydrol.2012.10.042
    Collins, M., R. Knutti, J. Arblaster, J.-L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W.J. Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi, A.J. Weaver and M. Wehner, 2013: Long-term Climate Change: Projections, Commitments and Irreversibility. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Stocker, T.F.D. Qin. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley. Cambridge University Press UK and New York, NY, USA.http://fcaglp.fcaglp.unlp.edu.ar/~atmos/Practica/RESUMEN%20AR5%20(IPCC).pdf (accessed on 15 July 2020)
    Croitoru, A.E., Holobaca, I.H., Lazar, C., Moldovan, F., Imbroane, A., 2012. Air temperature trend and the impact on winter wheat phenology in Romania. Climatic Change, 111(2), 393–410. https://doi.org/10.1007/s10584-011-0133-6
    Dai, A. 2013. Increasing drought under global warming in observations and models. Nature Climate Change, 3(1), 52–58. https://doi.org/10.1038/nclimate1633
    Degefu, M. A., Rowell, D. P., Bewket, W., 2017. Teleconnections between Ethiopian rainfall variability and global SSTs: observations and methods for model evaluation. Meteorology and Atmospheric Physics, 129(2), 173–186. https://doi.org/10.1007/s00703-016-0466-9
    Deka, R. L., Mahanta, C., Pathak, H., Nath, K. K., Das, S., 2013. Trends and fluctuations of rainfall regime in the Brahmaputra and Barak basins of Assam, India. Theoretical and Applied Climatology, 114(1–2), 61–71. https://doi.org/10.1007/s00704-012-0820-x
    Dessu, S. B., Seid, A. H., Abiy, A. Z., Melesse, A. M., 2016. Flood Forecasting and Stream Flow Simulation of the Upper Awash River Basin, Ethiopia Using Geospatial Stream Flow Model (GeoSFM) (pp. 367–384). Springer, Cham. https://doi.org/10.1007/978-3-319-18787-7_18
    Dibal, N.P, Mustapha, M., M., A. T., Yahaya, A. M., 2017. Statistical Change-point Analysis in Air Temperature and Rainfall Time Series for Cocoa Research Institute of Nigeria, Ibadan, Oyo State, Nigeria. International Journal of Applied Mathematics and Theoretical Physics, 3(4), 92. https://doi.org/10.11648/j.ijamtp.20170304.13
    Dile, Y.T.; Berndtsson, R.; Setegn, S.G.2013. Hydrological Response to Climate Change for Gilgel Abay River, in the Lake Tana Basin-Upper Blue Nile Basin of Ethiopia. PLoS ONE 2013, 8, e79296. https://doi.org/10.1371/journal.pone.0079296.
    Ditmar, P. 2018. Conversion of time-varying Stokes coefficients into mass anomalies at the Earth’s surface considering the Earth’s oblateness. Journal of Geodesy, 92(12), 1401–1412. https://doi.org/10.1007/s00190-018-1128-0
    Diro, G. T., Black, E., Grimes, D. I. F., 2008. Seasonal forecasting of Ethiopian spring rains. Meteorological Applications, 15(1), 73–83. https://doi.org/10.1002/met.63
    Dost, R., Obando, E. B., Hoogeveen, W., 2013. Water Accounting Plus (WA+) in the Awash River Basin Coping with Water Scarcity-Developing National Water Audits Africa Client: FAO, Land and Water Division. http://www.wateraccounting.org/files/projects/awash_basin.pdf. (accessed on 15 Juy 2020)
    El Kenawy, A. M., McCabe, M. F., Vicente-Serrano, S. M., López-Moreno, J. I., Robaa, S. M. 2016. Changes in the frequency and severity of hydrological droughts over Ethiopia from 1960 to 2013. https://doi.org/10.18172/cig.2931
    Elsanabary, M. H., Gan, T. Y., 2015. Evaluation of climate anomalies impacts on the Upper Blue Nile Basin in Ethiopia using a distributed and a lumped hydrologic model. Journal of Hydrology, 530, 225–240. https://doi.org/10.1016/J.JHYDROL.2015.09.052
    Edossa, D. C., Babel, M. S., DasGupta, A., 2010. Drought Analysis in the Awash River Basin, Ethiopia. Water Resources Management, 24(7), 1441–1460. https://doi.org/10.1007/s11269-009-9508-0
    Endris, H. S., Lennard, C., Hewitson, B., Dosio, A., Nikulin, G., Artan, G. A. 2019. Future changes in rainfall associated with ENSO, IOD and changes in the mean state over Eastern Africa. Climate Dynamics, 52(3–4), 2029–2053. https://doi.org/10.1007/s00382-018-4239-7
    Enyew, B.D.; Van Lanen, H.A.J.; Van Loon, A.F.2014. Assessment of the Impact of Climate Change on Hydrological Drought in Lake Tana Catchment, Blue Nile Basin, Ethiopia. J. Geol. Geosci, 03, 1–17. https://doi.org/10.4172/2329-6755.1000174.
    Endalew, G. J., 2007. Scientific report ; Changes in the frequency and intensity of extremes over Northeast Africa. http://bibliotheek.knmi.nl/knmipubWR/WR2007-02.pdf
    Fang, G., Huang, B. 2019. Seasonal predictability of the tropical Atlantic variability: northern tropical Atlantic pattern. Climate Dynamics, 52(11), 6909–6929. https://doi.org/10.1007/s00382-018-4556-x
    Farahmand, A. 2016. Frameworks for Improving Multi-Index Drought Monitoring Using Remote Sensing Observations. Ph.D. Theses and Dissertations, UC Irvine, USA. Available online https://escholarship.org/uc/item/5x29g304 (accessed May 15, 2020)
    Frappart, F., Papa, F., Santos Da Silva, J., Ramillien, G., Prigent, C., Seyler, F., Calmant, S. 2012. Surface freshwater storage and dynamics in the Amazon basin during the 2005 exceptional drought. Environmental Research Letters, 7(4). https://doi.org/10.1088/1748-9326/7/4/044010
    Fekadu, K., 2015. Ethiopian Seasonal Rainfall Variability and Prediction Using Canonical Correlation Analysis (CCA). Earth Sciences, 4(3), 112. https://doi.org/10.11648/j.earth.20150403.14
    Ford, T. W., McRoberts, D. B., Quiring, S. M., Hall, R. E. 2015. On the utility of in situ soil moisture observations for flash drought early warning in Oklahoma, USA. Geophysical Research Letters, 42(22), 9790–9798. https://doi.org/10.1002/2015GL066600
    Ford, T.W. and Labosier, C.F., 2017. Meteorological conditions associated with the onset of flash drought in the eastern United States. Agricultural and forest meteorology, 247, pp.414-423. https://agris.fao.org/agris-search/search.do?recordID=US201800046670
    Gali, S., 2015. On Importance of Normality Assumption in Using a T-Test: One Sample and Two Sample Cases (pp. 3–5). www.globalbizresearch.org
    Gebregiorgis, D., Rayner, D., Linderholm, H. W. 2019. Does the IOD Independently Influence Seasonal Monsoon Patterns in Northern Ethiopia? Atmosphere, 10(8), 432. https://doi.org/10.3390/atmos10080432
    Gebremeskel, G., Tang, Q., Sun, S., Huang, Z., Zhang, X., Liu, X. 2019. Droughts in East Africa: Causes, impacts and resilience. Earth-Science Reviews. Elsevier B.V. https://doi.org/10.1016/j.earscirev.2019.04.015
    Gebrehiwot, T., van der Veen, A., Maathuis, B. 2011. Spatial and temporal assessment of drought in the Northern highlands of Ethiopia. International Journal of Applied Earth Observation and Geoinformation, 13(3), 309–321. https://doi.org/10.1016/j.jag.2010.12.002
    Gedefaw, M., Wang, H., Yan, D., Song, X., Yan, D., Dong, G. Qin, T. 2018. Trend Analysis of Climatic and Hydrological Variables in the Awash River Basin, Ethiopia. Water, 10(11), 1554. https://doi.org/10.3390/w10111554
    Gedefaw, M., Wang, H., Yan, D., Qin, T., Wang, K., Girma, A., Abiyu, A. 2019. Water Resources Allocation Systems under Irrigation Expansion and Climate Change Scenario in Awash River Basin of Ethiopia. Water, 11(10), 1966. https://doi.org/10.3390/w11101966
    Gizaw, S.M.; Biftu, G.F.; Gan, T.Y.; Moges, S.A.; Koivusalo, H. 2017. Potential impact of climate change on streamflow of major Ethiopian rivers. Clim. Chang, 143, 371–383. https://doi.org/10.1007/s10584-017-2021-1.
    Getahun, Y. S., HAJ, V. L., 2015. Assessing the Impacts of Land Use-Cover Change on Hydrology of Melka Kuntrie Subbasin in Ethiopia, Using a Conceptual Hydrological Model. Hydrol Current Res, Vol 6(3): 210. https://doi.org/10.4172/2157-7587.1000210
    Goovaerts, P., 2010. Combining Areal and Point Data in Geostatistical Interpolation: Applications to Soil Science and Medical Geography. Math Geosci 42, 535–554. https://doi.org/10.1007/s11004-010-9286-5
    Gleixner, S., Keenlyside, N., Viste, E., Korecha, D., 2016. The El Niño effect on Ethiopian summer rainfall. Climate Dynamics, 49(5–6), 1865–1883. https://doi.org/10.1007/s00382-016-3421-z
    Haile, A.T.; Akawka, A.L.; Berhanu, B.; Rientjes, T.2017. Changes in water availability in the Upper Blue Nile basin under the representative concentration pathways scenario. Hydrol. Sci. J., 62, 2139–2149. https://doi.org/10.1080/02626667.2017.1365149.
    Hailu, R., Tolossa, D., Alemu, G., 2017. Water security: stakeholders’ arena in the Awash River Basin of Ethiopia. Sustainable Water Resources Management, 1.19. https://doi.org/10.1007/s40899-017-0208-2
    Humphrey, V., Gudmundsson, L., Seneviratne, S. I. 2016. Assessing Global Water Storage Variability from GRACE: Trends, Seasonal Cycle, Subseasonal Anomalies and Extremes. Surveys in Geophysics. Springer Netherlands. https://doi.org/10.1007/s10712-016-9367-1
    Hasan, E., Tarhule, A. 2019. Trend dynamics of GRACE terrestrial water storage in the Nile River Basin. Preprints, 14–23. https://doi.org/10.20944/preprints201909.0042.v1
    Hasan, E., Tarhule, A., Hong, Y., Moore, B. 2019. Assessment of Physical Water Scarcity in Africa Using GRACE and TRMM Satellite Data. Remote Sensing, 11(8), 904. https://doi.org/10.3390/rs11080904
    Hayelom, B., Chen, Y., Marsie, Z., Negash, M., 2017. Temperature and Precipitation Trend Analysis over the Last 30 Years in Southern Tigray Regional State, Ethiopia. https://doi.org/10.20944/PREPRINTS201702.0014.V1
    Hobbins, M. T., Wood, A., McEvoy, D. J., Huntington, J. L., Morton, C., Anderson, M., Hain, C. 2016. The Evaporative Demand Drought Index. Part I: Linking Drought Evolution to Variations in Evaporative Demand. Journal of Hydrometeorology, 17(6), 1745–1761. https://doi.org/10.1175/JHM-D-15-0121.1
    Hironoa,.R and Schröder,.H., 2004. The Road to and from the Kyoto Protocol: The Perspectives of Germany and Japan. International Review for Environmental Strategies. https://www.iges.or.jp/en/publication_documents/pub/peer/en/1156/IRES_Vol.5-1_39.pdf (accessed on 15 July 2020)
    Hong, C.C., Li, T., Ho, T., Kug, J.C., 2008. Asymmetry of the Indian Ocean Dipole. Part I: Observational Analysis. https://doi.org/10.1175/2008JCLI2222.1
    Homdee, T., Pongput, K., Kanae, S. 2016. A comparative performance analysis of three standardized climatic drought indices in the Chi River basin, Thailand. Agriculture and Natural Resources, 50(3), 211–219. https://doi.org/10.1016/j.anres.2016.02.002
    Ibrahim, M., Favreau, G., Scanlon, B. R., Seidel, J. L., Le Coz, M., Demarty, J., Cappelaere, B. 2014. Augmentation sur le long terme de la recharge diffuse des aquifères suite à l’expension des cultures pluviales dans le Sahel, Afrique de l’Ouest. Hydrogeology Journal, 22(6), 1293–1305. https://doi.org/10.1007/s10040-014-1143-z
    IPCC, 2014. Climate Change 2014: Impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. In: Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., Kissel, E.S., Levy, A.N., MacCracken, S., Mastrandrea, P.R., White, L.L. (Eds.). Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p. 1132. http://www.ipcc-wg2.org/AR5/report/full-report/ (accessed on 02 February 2020).
    IPCC, 2007. Summary for Policymakers. In: Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK and New York, NY, USA, 2007. Available online: https://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-spm.pdf (accessed on 02 March 2019).
    IPCC, 2013. Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK and New York, NY, USA, 2013; p. 1535. Available online: doi:10.1017/CBO9781107415324 (accessed on 14 August 2019).
    IPCC, 2019. History of the IPCC. https://www.ipcc.ch/about/history/ (accessed on 15 July 2020)
    IFRC, 2017: Emergency plan of action update Ethiopia: Drought. IFRC Rep., 15 pp. http://adore.ifrc.org/Download.aspx?FileId=156069. Accessed July 11, 2020.
    Jain, S. K., Kumar, V., Saharia, M., 2013. Analysis of rainfall and temperature trends in northeast India. International Journal of Climatology, 33(4), 968–978. https://doi.org/10.1002/joc.3483
    Jaiswal, R. K., Lohani, A. K., Tiwari, H. L., 2015. Statistical Analysis for Change Detection and Trend Assessment in Climatological Parameters. Environmental Processes, 2(4), 729–749. https://doi.org/10.1007/s40710-015-0105-3
    Javari, M., 2016. Trend and Homogeneity Analysis of Precipitation in Iran. Climate, 4(3), 44. https://doi.org/10.3390/cli4030044
    Jury, M. R. 2010. Ethiopian decadal climate variability. Theoretical and Applied Climatology, 101(1), 29–40. https://doi.org/10.1007/s00704-009-0200-3
    Kalayci, S., Kahya, E., 2006. Assessment of streamflow variability modes in Turkey: 1964–1994. Journal of Hydrology, 324(1-4), 163–177. https://doi.org/10.1016/J.JHYDROL.2005.10.002
    Kang, H.M, Yusof, F., 2012. Homogeneity Tests on Daily Rainfall Series in Peninsular Malaysia. Int. J. Contemp. Math. Sciences (Vol. 7). http://m-hikari.com/ijcms/ijcms-2012/1-4-2012/kangIJCMS1-4-2012.pdf
    Kerr, R.A., 2004. Three degrees of consensus: climate researchers are finally homing in on just how bad greenhouse warming could get and it seems increasingly unlikely that we will escape with a mild warming. https://science.sciencemag.org/content/sci/305/5686/932.full.pdf (accessed on 02 March 2019)
    Kendall, M., 1975. Rank correlation methods. London: Charles Griffin. http://www.worldcat.org/title/rank-correlation-methods/oclc/489980698
    Korecha, D., Barnston, A. G., 2007. Predictability of June–September Rainfall in Ethiopia. Monthly Weather Review, 135(2), 628–650. https://doi.org/10.1175/MWR3304.1
    Kump, L.R., Kasting, J.F. and Crane, R.G., 2004. The earth system (Vol. 432). Upper Saddle River, NJ: Pearson Prentice Hall.
    Landerer, F. W., Swenson, S. C. 2012. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resources Research, 48(4). https://doi.org/10.1029/2011WR011453
    Lewis, K. 2017. Understanding climate as a driver of food insecurity in Ethiopia. Clim. Change. 144, 317–328. https://doi.org/10.1007/s10584-017-2036-7
    Liebmann, B., Hoerling, M. P., Funk, C., Bladé, I., Dole, R. M., Allured, D., Eischeid, J. K. 2014. Understanding Recent Eastern Horn of Africa Rainfall Variability and Change. Journal of Climate, 27(23), 8630–8645. https://doi.org/10.1175/JCLI-D-13-00714.1
    Lyon, B.; Vigaud, N. 2017. Unraveling East Africa’s Climate Paradox Ch. in Climate Extremes, Trends and Mechanisms. J. Geophys. Monograph., 226, 265–281.
    Li, X., He, B., Quan, X., Liao, Z., Bai, X. 2015. Use of the Standardized Precipitation Evapotranspiration Index (SPEI) to Characterize the Drying Trend in Southwest China from 1982–2012. Remote Sensing, 7(8), 10917–10937. https://doi.org/10.3390/rs70810917
    Liou, Y.-A., Mulualem, G. M. 2019. Spatio–temporal Assessment of Drought in Ethiopia and the Impact of Recent Intense Droughts. Remote Sensing, 11(15), 1828. https://doi.org/10.3390/rs11151828
    Long, D., Scanlon, B. R., Longuevergne, L., Sun, A. Y., Fernando, D. N., Save, H. 2013. GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas. Geophysical Research Letters, 40(13), 3395–3401. https://doi.org/10.1002/grl.50655
    Ludwig F., Franssen W., Jans W., Beyenne T., Kruijt B., SupitI. 2013: Climate change impacts on the Congo Basin region: Climate Change Scenarios for the Congo Basin. Climate Service Centre Report No. 11, Hamburg, Germany, ISSN: 2192- 4058. https://edepot.wur.nl/341523
    Ma, S., Wu, Q., Wang, J., Zhang, S. 2017. Temporal Evolution of Regional Drought Detected from GRACE TWSA and CCI SM in Yunnan Province, China. Remote Sensing, 9 (11), 1124. https://doi.org/10.3390/rs9111124
    MacDonald, A. M., Bell, R. A., Kebede, S., Azagegn, T., Yehualaeshet, T., Pichon, F., Calow, R. C. 2019. Groundwater and resilience to drought in the Ethiopian highlands. Environmental Research Letters, 14(9), 095003. https://doi.org/10.1088/1748-9326/ab282f
    Madakumbura, G. D., Kim, H., Utsumi, N., Shiogama, H., Fischer, E. M., Seland, Ø.Oki, T. 2019. Event-to-event intensification of the hydrologic cycle from 1.5 °C to a 2 °C warmer world. Scientific Reports, 9(1), 1-7. https://doi.org/10.1038/s41598-019-39936-2
    Marchant, R., Mumbi, C., Behera, S., Yamagata, T., 2007. The Indian Ocean dipole ? The unsung driver of climatic variability in East Africa. African Journal of Ecology, 45(1), 4–16. https://doi.org/10.1111/j.1365-2028.2006.00707.x
    Martín-Rey, M., Polo, I., Rodríguez-Fonseca, B., Losada, T., Lazar, A. 2018. Is there evidence of changes in tropical Atlantic variability modes under AMO phases in the observational record? Journal of Climate, 31(2), 515–536. https://doi.org/10.1175/JCLI-D-16-0459.1
    Marullo, S., Artale, V., Santoler, R., 2011. The SST Multidecadal Variability in the Atlantic-Mediterranean Region and Its Relation to AMO. https://doi.org/10.1175/2011JCLI3884.1
    Mays, L. 2014. Integrated Urban Water Management: Arid and Semi-Arid Regions. Integrated Urban Water Management: Arid and Semi-Arid Regions. CRC Press. https://doi.org/10.1201/9781482266207
    Masih, I., Maskey, S., Mussá, F. E. F.,Trambauer, P. 2014. A review of droughts on the African continent: a geospatial and long-term perspective. Hydrology and Earth System Sciences, 18(9), 3635–3649. https://doi.org/10.5194/hess-18-3635-2014
    McKee, T. B., Doesken, N. J., Kleist, J.1993. The relationship of drought frequency and duration to time scales. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.462.4342
    McEvoy, D. J., Huntington, J. L., Hobbins, M. T., Wood, A., Morton, C., Anderson, M., Hain, C. 2016. The Evaporative Demand Drought Index. Part II: CONUS-Wide Assessment against Common Drought Indicators. Journal of Hydrometeorology, 17(6), 1763–1779. https://doi.org/10.1175/JHM-D-15-0122.1
    McEvoy, D., Hobbins, M., Brown, T., VanderMolen, K., Wall, T., Huntington, J., Svoboda, M. 2019. Establishing Relationships between Drought Indices and Wildfire Danger Outputs: A Test Case for the California-Nevada Drought Early Warning System. Climate, 7(4), 52. https://doi.org/10.3390/cli7040052
    Mengistu, D., Bewket, W., Lal, R., 2014. Recent spatiotemporal temperature and rainfall variability and trends over the Upper Blue Nile River Basin, Ethiopia. International Journal of Climatology, 34(7), 2278–2292. https://doi.org/10.1002/joc.3837
    Mersha, A., Masih, I., de Fraiture, C., Wenninger, J., Alamirew, T. 2018. Evaluating the Impacts of IWRM Policy Actions on Demand Satisfaction and Downstream Water Availability in the Upper Awash Basin, Ethiopia. Water, 10(7), 892. https://doi.org/10.3390/w10070892
    Montazerolghaem, M., Vervoort, W., Minasny, B., McBratney, A., 2016. Long-term variability of the leading seasonal modes of rainfall in south-eastern Australia. Weather and Climate Extremes, 13, 1-14. https://doi.org/10.1016/J.WACE.2016.04.001
    Mohammed, R.; Scholz, M. 2018. Climate change and anthropogenic intervention impact on the hydrologic anomalies in a semi-arid area: Lower Zab River Basin, Iraq. Environ. Earth Sci. 77(10), 357. https://doi.org/10.1007/s12665-018-7537-9
    Mohammed, Y., Yimer, F., Tadesse, M., Tesfaye, K. 2017. Meteorological drought assessment in northeast highlands of Ethiopia. https://doi.org/10.1108/IJCCSM-12-2016-0179
    Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., Van Vuuren, D.P., Carter, T.R., Emori, S., Kainuma, M., Kram, T. and Meehl, G.A., 2010. The next generation of scenarios for climate change research and assessment. Nature, 463(7282), pp.747-756. https://www.nature.com/articles/nature08823
    Mo, K. C., Lettenmaier, D. P. 2016. Precipitation Deficit Flash Droughts over the United States. Journal of Hydrometeorology, 17(4), 1169-1184. https://doi.org/10.1175/JHM-D-15-0158.1
    Mendez, M. and Calvo-Valverde, L. 2016. Development of the HBV-TEC Hydrological Model. In Procedia Engineering (Vol. 154, pp. 1116–1123). https://doi.org/10.1016/j.proeng.2016.07.521
    Mera, G. A. 2018. Drought and its impacts in Ethiopia. Weather and Climate Extremes. Elsevier B.V. https://doi.org/10.1016/j.wace.2018.10.002
    Munagapati, H., Yadav, R., Tiwari, V. M. 2018. Identifying Water Storage Variation in Krishna Basin, India from in situ and Satellite based Hydrological Data. Journal of the Geological Society of India, 92(5), 607–615. https://doi.org/10.1007/s12594-018-1074-8
    Murendo, C., Keil, A., Zeller, M., 2010. Drought impacts and related risk management by smallholder farmers in developing countries: evidence from Awash River Basin, Ethiopia. Research in Development Economics and Policy. https://ideas.repec.org/p/ags/uhohdp/114750.html
    Mulugeta, S., Fedler, C., Ayana, M. 2019. Analysis of Long-Term Trends of Annual and Seasonal Rainfall in the Awash River Basin, Ethiopia. Water, 11(7), 1498. https://doi.org/10.3390/w11071498
    Mu, Q., Heinsch, F. A., Zhao, M., Running, S. W. 2007. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment, 111(4), 519–536. https://doi.org/10.1016/j.rse.2007.04.015
    Mu, Q., Zhao, M., Running, S. W. 2011. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment, 115(8), 1781–1800. https://doi.org/10.1016/j.rse.2011.02.019
    Nicholson, S. E., 2011. Dryland Climatology. Arid regions climate. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511973840
    NOAA, 2020. Trends in Atmospheric Carbon Dioxide, Global Monitoring Laboratory Earth System Research Laboratories https://www.esrl.noaa.gov/gmd/ccgg/trends/ (accessed July 14, 2020).
    Nguvava, M., Abiodun, B. J., Otieno, F. 2019. Projecting drought characteristics over East African basins at specific global warming levels. Atmospheric Research, 228, 41–54. https://doi.org/10.1016/j.atmosres.2019.05.008
    Nakicenovic, N., Alcamo, J., Grubler, A., Riahi, K., Roehrl, R.A., Rogner, H.H. and Victor, N., 2000. Special report on emissions scenarios (SRES), a special report of Working Group III of the intergovernmental panel on climate change. Cambridge University Press. https://archive.ipcc.ch/pdf/special-reports/spm/sres-en.pdf (accessed on 15 July 2020)
    Nicholson, S. E., Funk, C., Fink, A. H. 2018. Rainfall over the African continent from the 19th through the 21st century. Global and Planetary Change, 165, 114–127. https://doi.org/10.1016/j.gloplacha.2017.12.014
    Nica, A., Popescu, A., Ibanescu, D.C. 2019. Human influence on the climate system. Current Trends in Natural Sciences, 8, 209–215. https://natsci.upit.ro/media/1818/32nica-et-al.pdf (accessed July 2, 2020)
    Otkin, J. A., Svoboda, M., Hunt, E. D., Ford, T. W., Anderson, M. C., Hain, C., Basara, J. B. 2018. Flash Droughts: A Review and Assessment of the Challenges Imposed by Rapid-Onset Droughts in the United States. Bulletin of the American Meteorological Society, 99(5), 911–919. https://doi.org/10.1175/BAMS-D-17-0149.1
    Otkin, J. A., Anderson, M. C., Hain, C., Svoboda, M. 2014. Examining the Relationship between Drought Development and Rapid Changes in the Evaporative Stress Index. Journal of Hydrometeorology, 15(3), 938–956. https://doi.org/10.1175/JHM-D-13-0110.1
    Parker, L., Bourgoin, C., Martinez-Valle, A., Läderach, P. 2019. Vulnerability of the agricultural sector to climate change: The development of a pan-tropical Climate Risk Vulnerability Assessment to inform sub-national decision making. PLOS ONE, 14(3), e0213641. https://doi.org/10.1371/journal.pone.0213641
    Park, J.-H., Li, T., 2018. Interdecadal modulation of El Niño–tropical North Atlantic teleconnection by the Atlantic multi-decadal oscillation. Clim. Dyn. 1–16. https://doi.org/10.1007/s00382-018-4452-4
    Pendergrass, A.G.; Meehl, G.A.; Pulwarty, R.; Hobbins, M.; Hoell, A.; AghaKouchak, A.; Bonfils, C.J.W.; Gallant, A.J.E.; Hoerling, M.; Hoffmann, D.; et al. 2020. Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Clim. Chang. 2020, 10, 191–199. https://doi.org/10.1038/s41558-020-0709-0
    Priestley, C. H. B., Taylor, R. J., 1972. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Http://Dx.Doi.Org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2. https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
    Ramli, M. F., Aris, A. Z., Jamil, N. R., Aderemi, A. A. 2019. Evidence of climate variability from rainfall and temperature fluctuations in semi-arid region of the tropics. Atmospheric research, 224, 52-64. https://doi.org/10.1016/j.atmosres.2019.03.023
    Reager, J. T., Gardner, A. S., Famiglietti, J. S., Wiese, D. N., Eicker, A., Lo, M. H. 2016. A decade of sea level rise slowed by climate-driven hydrology. Science, 351(6274), 699–703. https://doi.org/10.1126/science.aad8386
    Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Tavoni, M.,2017. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environ. Chang. 42, 153–168.
    Robinson, S.; Willenbockel, D.; Strzepek, K. A., 2012. Dynamic General Equilibrium Analysis of Adaptation to Climate Change in Ethiopia. Rev. Dev. Econ, 16(3), 489–502. https://doi.org/10.1111/j.1467-9361.2012.00676.x
    Ros, F. C., Tosaka, H., Sasaki, K., Sidek, L. M., Basri, H., 2015. Absolute homogeneity test of Kelantan catchment precipitation series. In AIP Conference Proceedings (Vol. 1660, p. 050028). AIP Publishing LLC. https://doi.org/10.1063/1.4915661
    Rogelj, J., Meinshausen, M., Knutti, R. 2012. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nature Climate Change, 2(4), 248–253. https://doi.org/10.1038/nclimate1385
    Running, S., Q. Mu, M. Zhao. 2017.MOD16A2: MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500 m SIN Grid V006. Distributed by NASA EOSDIS Land Processes DAAC. https://lpdaac.usgs.gov/products/mod16a2v006/ (accessed on 2020-02-12.)
    Running, S. W., Mu, Q., Zhao, M., Moreno, A. 2017.User’s Guide MODIS Global Terrestrial Evapotranspiration (ET) Product (NASA MOD16A2/A3) NASA Earth Observing System MODIS Land Algorithm. Accessed 2020-02-13 https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/modis/MOD16_ET_User-Guide_2017.pdf
    Sakumura, C., Bettadpur, S., Bruinsma, S. 2014. Ensemble prediction and intercomparison analysis of GRACE time-variable gravity field models. Geophysical Research Letters, 41(5), 1389–1397. https://doi.org/10.1002/2013GL058632
    Sanderson, B.M., O’Neill, B.C., Kiehl, J.T., Meehl, G.A., Knutti, R. and Washington, W.M., 2011. The response of the climate system to very high greenhouse gas emission scenarios. Environmental Research Letters, 6(3), p.034005. https://iopscience.iop.org/article/10.1088/1748-9326/6/3/034005 .(accessed July 2, 2020).
    Santoso, A., Mcphaden, M.J., Cai, W., 2017. The Defining Characteristics of ENSO Extremes and the Strong 2015/2016 El Niño. https://doi.org/10.1002/2017RG000560
    Sahin, S., Cigizoglu, H. K., 2010. Homogeneity analysis of Turkish meteorological data set. Hydrological Processes, 24(8), 981–992. https://doi.org/10.1002/hyp.7534
    Saelthun, N.R., 1996. The ‘Nordic’HBV model. Description and documentation of the model version developed for the project climate change and energy production. NVE publication, 7. https://www.uio.no/studier/emner/matnat/geofag/nedlagte-emner/GEO4430/v06/undervisningsmateriale/HBVMOD.PDF (Accessed 18 July 2020).
    Segele, Z. T., Lamb, P. J., 2005. Characterization and variability of Kiremt rainy season over Ethiopia. Meteorology and Atmospheric Physics, 89(1-4), 153–180. https://doi.org/10.1007/s00703-005-0127-x
    Seleshi, Y., Zanke, U., 2004. Recent changes in rainfall and rainy days in Ethiopia. International Journal of Climatology, 24(8), 973–983. https://doi.org/10.1002/joc.1052
    Setegn, S.G.; Rayner, D.; Melesse, A.M.; Dargahi, B.; Srinivasan, R.2011. Impact of climate change on the hydroclimatology of Lake Tana Basin, Ethiopia. Water Resour. Res. 47. Available online: https://doi.org/10.1029/2010WR009248 (accessed on 15 April 2019day month year).
    Seibert, J. 2000. Multi-criteria calibration of a conceptual runoff model using a genetic algorithm. Hydrol. Earth Syst. Sci., 4(2), 215–224. https://doi.org/10.5194/hess-4-215-2000
    Seibert, J. HBV light version 2 User’s Manual. 2005. https://www.geo.uzh.ch/dam/jcr:c8afa73c-ac90-478e-a8c7-929eed7b1b62/HBV_manual_2005.pdf (accessed on 14 February 2019)
    Seibert, J.;Vis, M. J. P. 2012. Teaching hydrological modeling with a user-friendly catchment-runoff-model software package. Hydrol. Earth Syst. Sci.16(9), 3315-3325. https://doi.org/10.5194/hess-16-3315-2012
    Seibert, J., McDonnell, J. J. 2010. Land-cover impacts on streamflow: a change-detection modelling approach that incorporates parameter uncertainty. Hydrological Sciences Journal, 55(3), 316–332. https://doi.org/10.1080/02626661003683264
    Sinha, D., Syed, T. H., Famiglietti, J. S., Reager, J. T., Thomas, R. C. 2019. Characterizing drought in India using GRACE observations of terrestrial water storage deficit. Journal of Hydrometeorology, 18(2), 381–396. https://doi.org/10.1175/JHM-D-16-0047.1
    Solander, K. C.; Bennett, K. E.; Middleton, R. S.2017. Shifts in historical streamflow extremes in the Colorado River Basin. J. Hydrol. Reg. Stud.12, 363-377. https://doi.org/10.1016/J.EJRH.2017.05.004
    Souverijns, N., Thiery, W., Demuzere, M., Lipzig, N. P. M.Van., 2016. Drivers of future changes in East African precipitation. Environmental Research Letters, 11(11), 114011. https://doi.org/10.1088/1748-9326/11/11/114011
    Seyoum, W. M. 2018. Characterizing water storage trends and regional climate influence using GRACE observation and satellite altimetry data in the Upper Blue Nile River Basin. Journal of Hydrology, 566, 274–284. https://doi.org/10.1016/j.jhydrol.2018.09.025
    Seneviratne, S.I., N. Nicholls, D. Easterling, C.M. Goodess, S. Kanae, J. Kossin, Y. Luo, J. Marengo, K. McInnes, M. Rahimi, M. Reichstein, A. Sorteberg, C. Vera, and X. Zhang, 2012: Changes in climate extremes and their impacts on the natural physical environment. In: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of IPCC. Cambridge University Press, Cambridge, UK, and New York, NY, USA, pp. 109-230. https://www.ipcc.ch/site/assets/uploads/2018/03/SREX-Chap3_FINAL-1.pdf (accessed July 2, 2020).
    Sen, P. K. Estimates of the regression coefficient based on Kendall's tau. 1968. Journal of the American statistical association, 63(324), 1379-1389.
    Shiferaw, B., Tesfaye, K., Kassie, M., Abate, T., Prasanna, B. M., Menkir, A. 2014. Managing vulnerability to drought and enhancing livelihood resilience in sub-Saharan Africa: Technological, institutional and policy options. Weather and Climate Extremes, 3, 67–79. https://doi.org/10.1016/j.wace.2014.04.004
    Solander, K. C.; Bennett, K. E.; Middleton, R. S. 2017. Shifts in historical streamflow extremes in the Colorado River Basin. J. Hydrol. Reg. Stud. 12, 363–377. https://doi.org/10.1016/J.EJRH.2017.05.004
    Shawul, A. A., Chakma, S. 2020. Trend of extreme precipitation indices and analysis of long-term climate variability in the Upper Awash basin, Ethiopia. Theoretical and Applied Climatology, 140(1-2), 635-652. https://doi.org/10.1007/s00704-020-03112-8
    Shitarek, T., 2012. Ethiopia Country Report. Accessed July 11, 2020. https://assets.publishing.service.gov.uk/media/57a08aa340f0b649740006d0/61114_Ethiopia_Background_Report.pdf
    Sun, Z., Zhu, X., Pan, Y., Zhang, J., Liu, X. 2018. Drought evaluation using the GRACE terrestrial water storage deficit over the Yangtze River Basin, China. Science of the Total Environment, 634, 727–738. https://doi.org/10.1016/j.scitotenv.2018.03.292
    Suhaila, J., Yusop, Z., 2018. Trend analysis and change-point detection of annual and seasonal temperature series in Peninsular Malaysia. Meteorology and Atmospheric Physics, 130(5), 565–581. https://doi.org/10.1007/s00703-017-0537-6
    Suryabhagavan, K. V. 2017. GIS-based climate variability and drought characterization in Ethiopia over three decades. Weather and Climate Extremes, 15, 11–23. https://doi.org/10.1016/j.wace.2016.11.005
    Sur, C., Hur, J., Kim, K., Choi, W., Choi, M. 2015. An evaluation of satellite-based drought indices on a regional scale. International Journal of Remote Sensing, 36(22), 5593–5612. https://doi.org/10.1080/01431161.2015.1101653
    SMHI, 2006. Swedish Meteorological and Hydrological Institute . Integrated Hydrological Modelling System (IHMS). Manual Version 5.10; Swedish Meteorological and Hydrological Institute: Norrköping, Swedish. (Accessed 4 Apr 2020).
    Svoboda, M., LeComte, D., Hayes, M., Heim, R., Gleason, K., Angel, J., Stephens, S. 2002. The Drought monitor. Bulletin of the American Meteorological Society, 83(8), 1181-1190. https://doi.org/10.1175/1520-0477-83.8.1181
    Tadese, M. T., Kumar, L., Koech, R., Zemadim, B. 2019. Hydro-Climatic Variability: A Characterisation and Trend Study of the Awash River Basin, Ethiopia. Hydrology, 6(2), 35. https://doi.org/10.3390/hydrology6020035
    Tamaddun, K. A., Kalra, A., Bernardez, M., Ahmad, S. 2019. Effects of ENSO on Temperature, Precipitation, and Potential Evapotranspiration of North India’s Monsoon: An Analysis of Trend and Entropy. Water, 11(2), 189. https://doi.org/10.3390/w11020189
    Tamiru, S., Tesfaye, K., Mamo, G., 2015. Analysis of Rainfall and Temperature Variability to Guide Sorghum (Sorghum Bicolar) Production in Miesso Areas, Eastern Ethiopia. International Journal of Sustainable Agricultural Research, 2(1), 1-11. https://doi.org/10.18488/journal.70/2015.2.1/70.1.1.11
    Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F.,Watkins, M. M. 2004. GRACE measurements of mass variability in the Earth system. Science, 305(5683), 503–505. https://doi.org/10.1126/science.1099192
    Taye, M.T.; Ntegeka, V.; Ogiramoi, N.P.; Willems, P.2011. Assessment of climate change impact on hydrological extremes in two source regions of the Nile River Basin. Hydrol. Earth Syst. Sci.15, 209–222. https://doi.org/10.5194/hess-15-209-2011.
    Taye, M.T.; Dyer, E.; Hirpa, F.A.; Charles, K. 2018. Climate Change Impact on Water Resources in the Awash Basin, Ethiopia. Water, 10, 1560. https://doi.org/10.3390/w10111560.
    Teweldebirhan, T., D., Uddameri, V., Forghanparast, F., Hernandez, E. A., Ekwaro-Osire, S. 2019. Comparison of Meteorological and Agriculture-Related Drought Indicators across Ethiopia. Water, 11(11), 2218. https://doi.org/10.3390/w11112218
    Theil, H. 1950. A rank-invariant method of linear and polynomial. Mathematics, 392, 387.
    Tolera, M.B; Chung, I.M.; Chang, S.W.2018. Evaluation of the Climate Forecast System Reanalysis Weather Data for Watershed Modeling in Upper Awash Basin, Ethiopia. Water, 10(6), 725. https://doi.org/10.3390/w10060725
    Thomas, T., Nayak, P. C., Ghosh, N. C. 2014. Spatiotemporal analysis of drought characteristics in the bundelkhand region of central india using the standardized precipitation index. Journal of Hydrologic Engineering, 20(11). https://doi.org/10.1061/(ASCE)HE.1943-5584.0001189
    Thomas, E. A., Needoba, J., Kaberia, D., Butterworth, J., Adams, E. C., Oduor, P., Nagel, C. 2019. Quantifying increased groundwater demand from prolonged drought in the East African Rift Valley. Science of the Total Environment, 666, 1265–1272. https://doi.org/10.1016/j.scitotenv.2019.02.206
    Thompson, S. 2017. Hydrology for Water Management. London: CRC Press, https://doi.org/10.1201/9780203751435
    Taylor, K. E.; Stouffer, R. J.; Meehl, G. A. 2012. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 93(4), 485-498. https://doi.org/10.1175/BAMS-D-11-00094.1
    Trenberth, K.E., Shea, D.J., 2006. Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett. 33, L12704. https://doi.org/10.1029/2006GL026894
    Tilahun, H.; Erkossa, Teklu; Michael, M.; Hagos, Fitsum; Awulachew, S. B., 2011. Comparative Performance of Irrigated and Rainfed Agriculture in Ethiopia. World Applied Sciences Journal. https://cgspace.cgiar.org/handle/10568/41794
    Teshome, A., Zhang, J. 2019. Increase of Extreme Drought over Ethiopia under Climate Warming. https://www.hindawi.com/journals/amete/2019/5235429/ (Accessed July 11, 2020)
    Ummenhofer, C. C., Sen Gupta, A., England, M. H., Reason, C. J. C., 2009. Contributions of Indian Ocean Sea Surface Temperatures to Enhanced East African Rainfall. Journal of Climate, 22(4), 993–1013. https://doi.org/10.1175/2008JCLI2493.1
    Uhlenbrook, S.;Mohamed, Y.; Gragne, A. S.2010. Analyzing catchment behavior through catchment modeling in the Gilgel Abay, Upper Blue Nile River Basin, Ethiopia. Hydrol. Earth Syst. Sci.14(10), 2153–2165. https://doi.org/10.5194/hess-14-2153-2010
    USAID, 2018. The United States Agency for International Development. Economics of resilience to drought Ethiopia analysis. https://www.agrilinks.org/sites/default/files/ethiopia_economics_of_resilience_final_jan_4_2018_-_branded.pdf (Accessed July 11, 2020).
    Van Loon, A. F. 2015. Hydrological drought explained. Wiley Interdisciplinary Reviews: Water, 2(4), 359–392. https://doi.org/10.1002/wat2.1085
    van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., … Rose, S. K. 2011. The representative concentration pathways: An overview. Climatic Change, 109(1), 5–31. https://doi.org/10.1007/s10584-011-0148-z
    Van Ogtrop, F., Ahmad, M., Moeller, C., 2014. Principal components of sea surface temperatures as predictors of seasonal rainfall in rainfed wheat growing areas of Pakistan. Meteorological Applications, 21(2), 431–443. https://doi.org/10.1002/met.1429
    Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I. 2010. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. Journal of Climate, 23(7), 1696–1718. https://doi.org/10.1175/2009JCLI2909.1
    Vicente-Serrano, S. M., Miralles, D. G., Domínguez-Castro, F., Azorin-Molina, C., El Kenawy, A., Mcvicar, T. R., Peña-Gallardo, M. 2018. Global assessment of the standardized evapotranspiration deficit index (SEDI) for drought analysis and monitoring. Journal of Climate, 31(14), 5371–5393. https://doi.org/10.1175/JCLI-D-17-0775.1
    Vivid Economics., 2016. Water resources and extreme events in the Awash basin: economic effects and policy implications, report prepared for the Global Green Growth Institute, April 2016. http://www.vivideconomics.com/publications/water-resources-and-extreme-events-in-the-awash-basin-economic-effects-and-policy-implications
    Viste, E., Sorteberg, A., 2013. Moisture transport into the Ethiopian highlands. International Journal of Climatology, 33(1), 249–263. https://doi.org/10.1002/joc.3409
    Viste, E., 2012. Moisture Transport and Precipitation in Ethiopia. https://folk.uib.no/evi003/Publications/Viste_PhDthesis2012.pdf
    Wang, C., Dong, S., Evan, A. T., Foltz, G. R., Lee, S.-K., Wang, C., Lee, S.-K., 2012. Multidecadal Covariability of North Atlantic Sea Surface Temperature, African Dust, Sahel Rainfall, and Atlantic Hurricanes. Journal of Climate, 25(15), 5404–5415. https://doi.org/10.1175/JCLI-D-11-00413.1
    Wang, B., Li, J., He, Q., 2017. Variable and robust East Asian monsoon rainfall response to El Niño over the past 60 years (1957-2016). Adv. Atmos. Sci. 5-1248. https://doi.org/10.1007/s00376-017-7016-3
    Wagesho, N., Goel, N. K., Jain, M. K. 2013. Temporal and spatial variability of annual and seasonal rainfall over Ethiopia. Hydrological Sciences Journal, 58(2), 354–373. https://doi.org/10.1080/02626667.2012.754543
    Whitley, E., Ball, J., 2002. Statistics review 6: Nonparametric methods. Critical Care, 6(6), 509. https://doi.org/10.1186/cc1820
    Worqlul, A.; Dile, Y.T.; Ayana, E.; Jeong, J.; Adem, A.; Gerik, T.; Gerik, T.2018. Impact of Climate Change on Streamflow Hydrology in Headwater Catchments of the Upper Blue Nile Basin, Ethiopia. Water, 10, 120. https://doi.org/10.3390/w10020120.
    World Bank, 2017. Federal Democratic Republic of Ethiopia, Rural Productive Safety Net Project (P163438). Accessed July 11, 2020, http://documents1.worldbank.org/curated/en/830381505613638420/pdf/project-appraisal-document-pad-P163438-EU-edits-for-Board-version-08252017.pdf
    WMO, 2012.World Meteorological Organization. Standardized Precipitation Index User Guide; Svoboda, M.,Hayes, M., Wood, D., Eds.; WMO-No. 1090; WMO: Geneva, Switzerland, 2012;16p. https://library.wmo.int/doc_num.php?explnum_id=7768
    WMO, 2014. World Meteorological Organization. El Niño/ Southern Oscillation. https://library.wmo.int/doc_num.php?explnum_id=7888 (accessed July 2, 2020)
    Wilhite, D., Pulwarty, R. S. 2017. Drought and water crises: integrating science, management, and policy. CRC Press.
    Woo, M.K.; Thorne, R.; Szeto, K.;Yang, D., 2008. Streamflow hydrology in the boreal region under the influences of climate and human interference. Philos. Trans. Royal Soc. B. 363(1501), 2251-2260. https://doi.org/10.1098/rstb.2007.2197
    Werth, S., White, D., Bliss, D. W. 2017. GRACE Detected Rise of Groundwater in the Sahelian Niger River Basin. Journal of Geophysical Research: Solid Earth, 122(12), 10,459-10,477. https://doi.org/10.1002/2017JB014845
    Wu, R., Lin, M., Sun, H. 2020. Impacts of different types of El Niño and La Niña on northern tropical Atlantic sea surface temperature. Climate Dynamics, 54(9–10), 4147–4167. https://doi.org/10.1007/s00382-020-05220-7
    Yadeta, D., Kebede, A., Tessema, N. 2020. Climate change posed agricultural drought and potential of rainy season for effective agricultural water management, Kesem sub-basin, Awash Basin, Ethiopia. Theoretical and Applied Climatology, 140(12), 653–666. https://doi.org/10.1007/s00704-020-03113-7
    Yang, P., Xia, J., Zhan, C., Qiao, Y., Wang, Y. 2017. Monitoring the spatio-temporal changes of terrestrial water storage using GRACE data in the Tarim River basin between 2002 and 2015. Science of the Total Environment, 595, 218–228. https://doi.org/10.1016/j.scitotenv.2017.03.268
    Yao, N., Li, Y., Lei, T., Peng, L. 2018. Drought evolution, severity and trends in mainland China over 1961–2013. Science of the Total Environment, 616–617, 73-89. https://doi.org/10.1016/j.scitotenv.2017.10.327
    Yirdaw, S. Z., Snelgrove, K. R., Agboma, C. O. 2008. GRACE satellite observations of terrestrial moisture changes for drought characterization in the Canadian Prairie. Journal of Hydrology, 356(1-2), 84-92. https://doi.org/10.1016/j.jhydrol.2008.04.004
    Yu, Li, Cao, Schillerberg. 2019. Drought Assessment using GRACE Terrestrial Water Storage Deficit in Mongolia from 2002 to 2017. Water, 11(6), 1301. https://doi.org/10.3390/w11061301
    Zarenistanak, M., Dhorde, A.G., Kripalani, R. H., 2014. Trend analysis and change-point detection of annual and seasonal precipitation and temperature series over southwest Iran. Journal of Earth System Science, 123(2), 281–295. https://doi.org/10.1007/s12040-013-0395-7
    Zargar, A., Sadiq, R., Naser, B., Khan, F.I., 2011. A review of drought indices. Environ. Rev.19 (NA), 333–349. https://doi.org/10.1139/a11-013
    Zaroug, M. A. H., Giorgi, F., Coppola, E., Abdo, G. M., Eltahir, E. A. B., 2014. Simulating the connections of ENSO and the rainfall regime of East Africa and the upper Blue Nile region using a climate model of the Tropics. Hydrology and Earth System Sciences, 18(11), 4311–4323. https://doi.org/10.5194/hess-18-4311-2014
    Zeleke, T. T., Giorgi, F., Diro, G. T., Zaitchik, B. F. 2017. Trend and periodicity of drought over Ethiopia. International Journal of Climatology, 37(13), 4733–4748. https://doi.org/10.1002/joc.5122
    Zemede A., 2011. Assessing pathways, synergies and tradeoffs in alleviating poverty through sustainable ecosystem services in Sub-Saharan Africa Situational Analysis 3 Ethiopia and amp; the River Awash Basin. http://www.steps-centre.org/ourresearch/waterforfood.html
    Zhang, X., Li, M., Ma, Z., Yang, Q., Lv, M., Clark, R. 2019. Assessment of an Evapotranspiration Deficit Drought Index in Relation to Impacts on Ecosystems. Advances in Atmospheric Sciences, 36(11), 1273–1287. https://doi.org/10.1007/s00376-019-9061-6
    Zhang, Y., You, Q., Chen, C., Li, X. 2017. Flash droughts in a typical humid and subtropical basin: A case study in the Gan River Basin, China. Journal of Hydrology, 551, 162–176. https://doi.org/10.1016/j.jhydrol.2017.05.044
    Zhong, L., Hua, L., Yan, Z. 2020. Datasets of meteorological drought events and risks for the developing countries in Eurasia. Big Earth Data, 4(2), 191–223. https://doi.org/10.1080/20964471.2019.1710383
    Xie, Y., Huang, S., Liu, S., Leng, G., Peng, J., Huang, Q., Li, P. 2018. GRACE-Based Terrestrial Water Storage in Northwest China: Changes and Causes. Remote Sensing, 10(7), 1163. https://doi.org/10.3390/rs10071163
    Xu, L., Chen, N., Zhang, X., Chen, Z. 2019. Spatiotemporal Changes in China’s Terrestrial Water Storage From GRACE Satellites and Its Possible Drivers. Journal of Geophysical Research: Atmospheres, 124(22), 11976–11993. https://doi.org/10.1029/2019JD031147

    QR CODE
    :::