| 研究生: |
陳彥樺 Yan-Hua Chen |
|---|---|
| 論文名稱: |
數值邊坡模型之建構及應用-以陽明交通大學陽明校區為例- Create a Numerical Slope Model for Stability Analysis –A Case Study of Yang Ming Campus, NYCU – |
| 指導教授: |
田永銘
Yong-Ming Tien 盧育辰 YU-Chen Lu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 180 |
| 中文關鍵詞: | 邊坡穩定性分析 、離散元素分析 、PFC3D 、數值邊坡模型 |
| 外文關鍵詞: | slope stability analysis, discrete element analysis, PFC3D, in-situ numerical model |
| 相關次數: | 點閱:31 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文將邊坡模型架構歸納為數值地形模型、地工模型、離散裂隙網絡及數值分析方法四項要素所構成,並透過這四項要素建構一個可應用於現地邊坡穩定分析的數值模型。此外,本文以陽明交通大學陽明校區及其周邊邊坡(簡稱陽明邊坡)為例進行穩定分析,希望藉數值邊坡模型辦別穩定性欠佳之位置。
本文導入減面(Decimation)技術,透過對DEM資料進行處理,建構出一降低記憶體浪費且能提升運算效能的網格面地形圖。而後再使用離散元素分析軟體PFC3D建構一個近似於現況的陽明邊坡數值模型,並以此進行穩定性分析。而後再透過同時弱化岩石材料及不連續面,探討不同強度折減因子(SRF = 2、5、8)下陽明邊坡的穩定性、滑動影響範圍。此外,本文亦以不同地質條件(岩石材料、不連續面)個別作為弱化對象,以崩塌能量判別各項地質條件對於邊坡穩定性的影響程度。
結果顯示:在SRF=1、2時,位移量、高程及崩塌能量皆呈現較低的變化。然而,在SRF=5與SRF=8時,陽明邊坡整體出現大範圍滑動與高能量釋放,故推估陽明邊整體安全係數可能介於2至5之間。此外,對不同弱化對象(岩石材料、不連續面、兩者同時)分析後得到地質條件對邊坡穩定性的影響程度為:岩體+不連續面>>不連續面>岩體,而在三組不連續面( ILB、SC、L4)中,平行層面裂隙(SC)影響最為顯著。
This study conceptualizes the slope modeling framework as comprising four essential components: Digital Terrain Model (DTM), Geotechnical Model (GM), Discrete Fracture Network (DFN) and Numerical Analysis Method (NAM). These four components are integrated to construct a numerical model applicable to in-situ slope stability analysis. This study uses the slopes within and surrounding the Yang-Ming Campus of National Yang Ming Chiao Tung University (abbreviated as the Yang-Ming Slope) as a case study to evaluate in-situ stability and delineate potentially unstable regions.
To enhance simulation efficiency and reduce memory consumption, decimation technique is applied to the DEM to generate an optimized terrain geometry. Then, a numerical slope model nearly representative of the in-situ conditions was established by the discrete element method software PFC3D, and used to conduct a stability analysis. Subsequently, both rock materials and discontinuities were simultaneously weakened to investigate the stability and sliding impact range of the Yang-Ming slope under different strength reduction factors (SRF = 1, 2, 5, 8). In addition, this study also examines different geological features (rock materials, discontinuities) individually as weakening objects, using collapse energy to assess the impact of each geological features on slope stability.
The simulation results reveal that under SRF = 1 and 2, the Yang-Ming Slope exhibits minimal displacement, elevation change, and collapse energy, indicating a stable condition. However, significant slope movement and collapse energy release were observed at SRF = 5 and 8, suggesting that the factor of safety (FS) for the slope lies between 2 and 5. Comparative analysis of different weakening scenarios indicates that the degree of influence of various geological conditions on slope stability follows the order: rock mass + discontinuities >> discontinuities > rock mass. Furthermore, among the three analyzed discontinuity sets( ILB、SC、L4), the bedding-parallel fractures (SC) had the most pronounced impact on slope instability.
1. 內政部基本地形圖資料庫分組入口網站。
2. 台灣世曦工程顧問股份有限公司(2020),109年山坡地總體檢及設施檢測委託技術服務案期末報告書。國立陽明交通大學委託之山坡地總體檢期末報告。國立陽明交通大學。
3. 田永銘等人(2023)「裂隙岩體隧道、岩坡與基礎之異向性工程行為」,科技部專題研究計畫期末報告,MOST 109-2221-E-008-015。
4. 行政院農委會(2010),「水土保持技術規範」。
5. 吳振瑋(2023),「大規模順向坡滑動機制受岩層弱面分布與力學性質之影響」,碩士論文,國立中央大學土木工程學系,中壢。
6. 陸安 (2018),「向上滲流對順向節理岩體邊坡可滑動體形成之影響」,碩士論文,國立臺灣大學土木工程學系,台北。
7. 陳美彣(2025),「探討岩心資料模擬岩層裂隙分佈對大規模順向坡 滑動機制與機率之影響」,碩士論文,國立中央大學土木工程學系,中壢。
8. 黃森暉(2022),「從順向坡至逆向坡之崩塌行為模擬」,碩士論文,國立中央大學土木工程學系,中壢。
9. 黃哲彥(2022),「離散裂隙網絡調查、分析與建置方法之初探」,碩士論文,國立台北科技大學資源工程研究所,台北。
10. 黃清修(2023),「邊界條件對不同斜交角之岩坡崩塌行為影響」,碩士
論文,國立中央大學土木工程學系,中壢。
11. 董家鈞等人(2023),地質與地層模型不確定性之量化及其應用之整合型研究期中報告,行政院國家科學與技術委員會。
12. 劉芊妤(2024),「岩坡崩塌行為與臨界斜交角之研究」,碩士論文,國立中央大學土木工程學系,中壢。
13. Aruga, K. H., Tasaka, T. A. and Miyata, E. S. (2006) “林道設計における数値標高モデルの解像度比較:ワシントン州西部の針葉樹林における事例” 森林利用学会誌, Vol. 21, No.1, pp. 71-78.
14. Chong, Z., Yao, Q., Li, X., Shivakumar, K. (2020) “Acoustic emission investigation on scale effect and anisotropy of jointed rock mass by the discrete element method,” Arabian Journal of Geosciences, Vol. 13, No. 324.
15. Cundall, P. A., and Strack, O. D. (1979) “A discrete numerical model for granular assemblies,” Géotechnique, Vol. 29, No. 1, pp. 47-65.
16. Dershowitz, W. S. (1985) Rock joint system, Doctoral dissertation, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
17. Dershowitz, W. S., and Herda, H. H. (1992) “Interpretation of fracture spacing and intensity,” Proc 32nd US Rock Mech Symp, Santa Fe, NM, 757-766.
18. Einstein, H. H., & Baecher, G. B. (1983) “Probabilistic and statistical methods in engineering geology - Specific method and examples - Part I: Exploration,” Rock Mechanics and Rock Engineering, Vol.16, pp.39-72.
https://link.springer.com/article/10.1007/BF01030217
19. Esmaieli, K., Hadjigeorgiou, J. (2015) “Application of DFN–DEM modelling in addressing ground control issues at an underground mine,” Mining Technology, Vol. 124, Iss. 3, pp. 138-149.
20. Goodman, R.E. (1989) “Introduction to Rock Mechanics,” vol. 2, John Wiley & Sons, New York, pp. 8–305.
21. Hoek, E., Bray, J.W. (1981). “Rock Slope Engineering” The Institution of Mining and Metallurgy, London.
22. Hoek, E., and Brown, E. T. (1997). “Practical estimates of rock mass strength,” International Journal of Rock Mechanics and Mining Sciences, Vol. 34, No. 8, pp. 1165-1186.
https://doi.org/10.1016/S1365-1609(97)80069-X
23. Hudson, John A., Harrison john P. (1997) “Engineering rock mechanics-an introduction to the principles,” Elsevier Science Ltd, UK.
24. Itasca Consulting Group Inc. PFC3D (Particle Flow Code in 3 dimensions) (2019), Version 6.0, MN 55401.
25. Ivars, D. M., Pierce, M. E., Darcel, C., Reyes-Montes, J., Potyondy, D. O., Young, R. P., & Cundall, P. A. (2011) “The synthetic rock mass approach for jointed rock mass modelling,” International Journal of Rock Mechanics and Mining Sciences, Vol. 48, No. 2, pp. 219-244.
https://doi.org/10.1016/j.ijrmms.2010.11.014
26. Keaton, J. R. (2013) “Engineering geology: Fundamental input or random variable?” Proc. Geo-Congress, San Diego, California, USA, pp. 232–253.
https://doi.org/10.1061/9780784412763.020
27. Kobbelt, L., Campagna, S., Seidel, H. P. (1998)“A General Framework for Mesh Decimation” Proceedings of Graphics Interface '98, Vancouver, British Columbia, Canada, pp.43-50.
https://doi.org/10.20380/GI1998.06
28. Kulatilake, P. H. S. W., Malama, B., and Wang, J. L. (2001) “Physical and particle flow modeling of jointed rock block behavior under uniaxial loading,” International Journal of Rock Mechanics and Mining Sciences, Vol. 38, Iss. 5, pp. 641–657.
29. Lu, Y. C., Tien, Y. M., & Juang, C. H. (2017). “Uncertainty of 1D fracture intensity measurements,” Journal of Geophysical Research-Solid Earth. Vol. 122, No. 11, pp.9344-9358. https://doi.org/10.1002/2016JB013620
30. Lo, C. M., Cheng, T. Y., Lin, Y. H., Hsiao C. Y., Wei, L. W., Huang, C. M., Chi, S. Y., Lin, H. H., Lin, M. L. (2011) “A Kinematic Model of the Translational Slide at the Cidu Section of Formosan Freeway.,” Journal of Chinese Soil and Water Conservation, Vol. 42, No. 3, pp. 175-183.
31. Lowe, D. G. (1999) “Object recognition from local scale-invariant features,” International Conference on Computer Vision, Corfu, Greece, pp. 1150-1157.
32. Lowe, D. G. (2004) “Distinctive image features from scale-invariant keypoints,” International journal of Computer Vision, Vol.60, No. 2, pp. 91-110.
33. Mas Ivars, D. M., Pierce, M. E., Darcel, C., Reyes-Montes, J., Potyondy, D. O., Young, R. P., & Cundall, P. A. (2011) “The synthetic rock mass approach for jointed rock mass modelling,” International Journal of Rock Mechanics and Mining Sciences, Vol. 48, No. 2, pp. 219-244.
https://doi.org/10.1016/j.ijrmms.2010.11.014
34. Panigati, T., Zini, M., Striccoli, D., Giordano, P. F., Tonelli, D., Limongelli, M. P., Zonta, D. (2025) “Drone-based bridge inspections: Current practices and future directions,” Automation in Construction, Vol. 173, No. 106101.
https://doi.org/10.1016/j.autcon.2025.106101
35. Pierce, M., Ivars, D.M., and Sainsbury, B. (2009) “Use of Synthetic Rock Masses (SRM) to Investigate Jointed Rock Mass Strength and Deformation Behavior,” In: Anonymous proceedings of the international conference on rock joints and jointed rock masses, Tucson, Arizona, USA.
36. Potyondy, D. O., & Cundall, P. A. (2004) “A bonded-particle model for rock,” International Journal of Rock Mechanics and Mining Sciences, Vol.41, No.8, pp.1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
37. Riquelme, A. J., Tomás, R., & Abellán, A. (2016) “Characterization of rock slopes through slope mass rating using 3D point clouds,” International Journal of Rock Mechanics and Mining Sciences, Vol. 84, pp.165-176. https://doi.org/10.1016/j.ijrmms.2015.12.008
38. Tomasi, C. and Kanade, T. (1991) “Detection and Tracking of Point Features,” Carnegie Mellon University Technical Report CMU-CS-91-132.
39. Wyllie, Duncan C., Mah, Christopher W. (2004) “Rock Slope Engineering” Taylor & Francis e-Library, London.
40. Yeh, C. H., Dong, J. J., Khoshnevisan, S., Juang, C. H., Huang, W. C., Lu, Y. C. (2021) “The role of the geological uncertainty in a geotechnical design – A retrospective view of Freeway No. 3 Landslide in Northern Taiwan,” Engineering Geology, Vol. 291, No.20, Art. 106233.
41. Zhou, K. (2010) “Structure & Motion, Structure in Paattarn Recognition,” Vienna University of Techology, Faculty of Informatics, Institute of Computer Graphics and Algorithms, Pattern Recognition nd Image Processing Group.
42. Zienkiewicz, O. C., Humphbon, C., and Lewis, R. W. (1975) “Associated and non-associated visco-plasticity and plasticity in soil mechanics,” Géotechnique, Vol. 25, No. 4, pp. 671–689.