| 研究生: |
江承庭 Chen-ting Chiang |
|---|---|
| 論文名稱: |
氮化鋁鎵/氮化鎵高電子遷移率場效電晶體之表面氮化鋁氧化研究 |
| 指導教授: |
辛裕明
Yue-ming Hsin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 氮化鋁鎵/氮化鎵 、高電子遷移率場效電晶體 |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要針對在高阻值矽(111)基板上進行氮化鋁/氮化鋁鎵/氮化鋁/氮化鎵電晶體製作與研究,希望藉由表面高溫氧化技術,使表面形成氮氧化鋁並與隨後沉積之閘極絕緣層形成更好的介面及較佳的絕緣層品質。
為了探討高溫氧化製程對介面缺陷密度以及閘極絕緣層的影響,本論文採用快速熱退火機台在環境溫度900 °C氧氣流量20 sccm下分別進行2、3.5、5 min不同時間的高溫氧化製程,接續沉積氧化鋁作為元件的閘極絕緣層,並進行450 ℃閘極絕緣層之熱退火,製作出金氧半電容。元件閘極漏電流,在逆偏狀態下最低可達10-6 A/cm2相較於未經高溫氧化製程的金氧半電容降低約2個數量級,藉由電容電壓量測,可觀察到高溫氧化製程能改善不同頻率間產生的散色現象,反應出氧化層與半導體間的介面缺陷密度獲得改善,約在1012~1013 cm-2eV-1。
更進一步的將此高溫氧化製程技術應用至金氧半場效電晶體的製作上,並進行特性比較,發現高溫氧化處理能夠降低電晶體的閘極漏電流,以及改善介面缺陷密度,但是卻可能造成緩衝層及元件側壁的漏電流提升。
本實驗同時對金氧半場效電晶體進行動態導通電阻量測分析,比較關閉狀態下不同的偏壓條件,結果發現在電晶體關閉狀態而汲極施加偏壓小於30 V時,相較於未進行高溫氧化處理的金氧半場效電晶體測得之動態電阻/穩態導通電阻比值是有改善的,但隨著汲極偏壓大於30 V時,動態特性劣化的情況較未進行高溫氧化處理的金氧半場效電晶體更為嚴重,此結果顯示元件的動態導通電阻不僅受到介面缺陷密度的影響,高電場作用下容易引發出緩衝層及磊晶層當中缺陷,進而影響元件的切換特性。
This study focuses on the fabrication and characterization of AlN/AlGaN/AlN/GaN HEMTs on high-resistivity Si(111)substrate. The thermal oxidation is proposed before gate dielectric deposition to achieve the high quality gate dielectric and lower interface state density.
To discuss the impact of the high temperature oxidation process, we fabricated the metal-oxide-semiconductor capacitor (MOS capacitor) with 10 nm Al2O3 gate dielectrics with thermal oxidation process. The thermal oxidation process was in O2 ambient at 900 C for 2、3.5、5 minutes before the gate dielectrics deposition, followed by post-deposition annealing(in N2 ambient at 450 C). When MOS capacitors were reverse-biased, the MOS capacitor with thermal oxidation showed the lowest gate leakage current about 10-6 A/cm2, which is lower than the MOS capacitor without thermal oxidation by twofold. From capacitance–voltage measurement results, device with thermal oxidation process shows the lower dispersion between different measurement frequencies. The MOS capacitor with thermal oxidation process show the improvement on the interface state density between gate insulator and semiconductor. The interface state density is reduced to about 1012~1013 cm-2eV-1.
Comparing the influence about thermal oxidation process on MOS-HEMT. Devices with thermal oxidation process show reduction in the gate leakage current, and the interface state density. However, device with thermal oxidation process showed the lower buffer breakdown voltage.
In addition, dynamic resistances of the devices were analyzed with different kinds of quiescent bias. When drain quiescent bias is below 30V, the device with the thermal oxidation shows lower dynamic on-resistance to steady-state on-resistance ratio. When drain quiescent bias is High than 30 V, the device with the thermal oxidation shows the higher dynamic on-resistance to steady-state on-resistance ratio. The experimental results showed that the dynamic resistance is not only dominated by the interface density, but also affected by the buffer defects at high electric field.
[1] Guerra and J. Zhang, “ GaN Power Devices for Micro Inverters” Power Electronic Europe, issue 4, June 2010.
[2] L. F. Eastman and U. K. Mishra, “The toughest transistor yet GaN transistors,” IEEE Spectr, vol. 3, May 2002.
[3] Wataru Saito, Masahiko Kuraguchi, Yoshiharu Takada, Kunio Tsuda, Ichiro Omura, and Tsuneo Ogura, “Influence of Surface Defect Charge at AlGaN–GaN-HEMT Upon Schottky Gate Leakage Current and Breakdown Voltage,” IEEE Transactions Electron Devices, vol. 52, no. 2, pp. 159-164, Feb. 2005.
[4] Vetury, R., Zhang, N.Q. , Keller, Stacia , Mishra, Umesh K ,“The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs,” IEEE Transactions Electron Devices, vol. 48, no. 3, pp. 560-566, Mar. 2001.
[5] Yuanzheng Yue, Yue Hao, Jincheng Zhang, Jinyu Ni, Wei Mao, Qian Feng and Linjie Liu, “AlGaN/GaN MOS-HEMT With HfO2 Dielectric and Al2O3 interfacial passivation layer Grown by atomic layer deposition,” IEEE Electron Device Lett., vol. 29, no 8, pp. 838-840, Aug. 2008.
[6] Liang Pang, Yaguang Lian, Dong-Seok Kim, Jung-Hee Lee and Kyekyoon Kim, “AlGaN/GaN MOSHEMT with High-Quality Gate-SiO2 Achieved by Room-Temperature Radio Frequency Magnetron Sputtering,” IEEE Trans. Electron Devices., vol. 59, no. 10, pp. 2650-2655, Oct. 2012.
[7] T. Lalinsky´, G. Vanko, M. Vallo, E. Dobrocˇka, I. Ry´ger, and A. Vincze, “AlGaN/GaN high electron mobility transistors with nickel oxide based gates formed by high temperature oxidation,” Appl. Phys. Lett., 100, 092105, Feb. 2012.
[8] Han-Yin Liu, Bo-Yi Chou, Wei-Chou Hsu, Ching-Sung Lee, Jinn-Kong Sheu, and Chiu-Sheng Ho, “Enhanced AlGaN/GaN MOS-HEMT Performance by Using Hydroden Peroxide Oxidation Technique,” IEEE Trans. Electron Devices., vol. 60, no. 1, pp. 213-219, Jan. 2013.
[9] F. Medjdoub, M. Van Hove, K. Cheng, D. Marcon, M. Leys, and S. Decoutere, “Novel E-Mode GaN-on-Si MOSHEMT using a Selective Thermal Oxidation,” IEEE Electron Device Lett., vol. 31, no. 9, pp. 948-950, Sep. 2010.
[10] Y. Hori, Z. Yatabe, and T. Hashizume, “Characterization of interface states in Al2O3/AlGaN/GaN structures for improved performance of high-electron-mobility transistors,” Appl. Phys. Lett., 114, 244503, Dec. 2013.
[11] Yi-Che Lee, Tsung-Ting Kao, Joseph J. Merola, and Shyh-Chiang Shen, “A Remote-Oxygen-Plasma Surface Treatment Technique for lll-Nitride Heterojunction Field-Effect Transistors,” IEEE Trans. Electron Devices., vol. 61, no. 2, pp. 493-497, Feb. 2014.
[12] Maojun Wang, Ye Wang, Chuan Zhang, Bing Xie, Cheng P. Wen, Jinyan Wang, Yilong Hao, Wengang Wu, and Kevin J. Chen, “900 V/1.6 mΩ · cm2 Normally Off Al2O3/GaN MOSFET on Silicon Substrate,” IEEE Transactions Electron Devices, vol. 61, no. 6 pp. 2035 - 2040, June. 2014.
[13] Shenghou Liu, Shu Yang, Zhikai Tang, Qimeng Jiang, Cheng Liu, Maojun Wang, Bo Shen, and Kevin J. Chen, “Interface/border trap characterization of Al2O3/AlN/GaN metal-oxide-semiconductor structures with an AlN interfacial layer,” IEEE Applied Physics Letters, vol. 106, no. 5, 051605, Feb. 2015.
[14] Naohisa Harada, Yujin Hori, Naoki Azumaishi, Kota Ohi, and Tamotsu Hashizume, “Formation of Recessed-Oxide Gate for Normally-Off AlGaN/GaN High Electron Mobility Transistors Using Selective Electrochemical Oxidation,” Appl. Phys Express, 4, (2011) 021002.
[15] Dong Seup Lee, Jinwook W. Chung, Han Wang, Xiang Gao, Shiping Guo, Patrick Fay, and Tomás Palacios, “245-GHz InAlN/GaN HEMTs With Oxygen Plasma Treatment,” IEEE Electron Device Lett., vol. 32, no. 6, pp. 755-757, June. 2011.
[16] D. Balaz, Current Collapse and Device Degradation in AlGaN/GaN Heterostructure Field Effect Transistors, University of Glasgow, 2010.
[17] Y. C. Kong, Y.D. Zheng, C. H. Zhou, S.L. Gu, R. Zhang, P. han, Y. Shi, R. l. Jiang, “ Two-dimensional electron gas densities in AlGaN/AlN/GaN heterostructures,” Appl. Phys. A 84, 95–98, 2006.
[18] B. Heying, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films”, Appl. Phys. Lett., Vol. 68, 643 (1996)
[19] L. C. d. Bvcrist transferred to Commons by Lauro Chieza de Carvalho (Carvalho, X-ray photoelectron spectroscopy, 2009.
[20] Leland Rosenberger, Ronald Baird, Erik McCullen, Gregory Aunerc and Gina Shreve, “XPS analysis of aluminum nitride films deposited by plasma sourcemolecular beam epitaxy”, Surface and Interface Analysis, Vol. 40, 1254–1261, no. 9, 2008.
[21] Chihoko Mizue, Yujin Hori, Marcin Miczek, and Tamotsu Hashizume, “Capacitance–Voltage Characteristics of Al2O3/AlGaN/GaN Structures and State Density Distribution at Al2O3,AlGaN Interface” Jpn. J. Appl. Phys., 50 (2011) 021001.
[22] Sen Huang, Qimeng Jiang, Shu Yang, Zhikai Tang, and Kevin J. Chen, “Mechanism of PEALD-Grown AlN Passivation for AlGaN/GaN HEMTs: Compensation of Interface Traps by Polarization Charges,” IEEE Electron Device Lett., vol. 34, no. 2, pp. 193-195 Feb. 2013.
[23] S. Huang, Q. Jiang, K. Wei, G. Liu, J. Zhang, X. Wang, Y. Zheng, B. Sun, C. Zhao, H. Liu, Z. Jin,X. Liu, H. Wang, S. Liu, Y. Lu, C. Liu, S. Yang, Z. Tang, J. Zhang, Y. Hao, and Kevin J. Chen, “High-Temperature Low-Damage Gate Recess Technique and Ozone-Assisted ALD-grown Al2O3 Gate Dielectric for High-Performance Normally-Off GaN MIS-HEMTs,” Electron Devices Meeting, p. 17.4.1-17.4.4, Dec 2014.
[24] D. Jin and Jesus A. del Alamo, “Mechanisms responsible for dynamic ON-resistance in GaN high-voltage HEMTs,” in Proc. IEEE Int. Symp. Power Semicond. Devices ICs., June 2012.
[25] Z. H. Liu, G. I. Ng, S. Arulkumaran, Y. K. T. Maung, K. L. Teo, “Improved two-dimensional electron gas transport characteristics in AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor with atomic layer-deposited Al2O3 as gate insulator,” Appl. Phys. Lett., 2009