| 研究生: |
高偉紘 Wei-hung Kao |
|---|---|
| 論文名稱: |
利用逆相管柱層析並輔以溶解度參數計算進行聚乙烯二醇化人類副甲狀腺素位置異構物之分離 Separation of Positional Mono-PEGylated Teriparatide Isomers Using Reverse-Phased Chromatography Assisted by Solubility Parameter Calculation |
| 指導教授: |
陳文逸
Wen-yih Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 聚乙烯二醇化 、胜肽位置異構物 、人類副甲狀腺素 、逆相管柱曾析 、溶解度參數 |
| 外文關鍵詞: | PEGylation, Peptide positional isomers, Human parathyroid hormone, Reversed-phase chromatography, Solubility parameter |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Teriparatide為人類副甲狀腺素(human parathyroid hormone, PTH)中1到34胺基酸片段。於2002年,美國食品藥物管理局核可Teriparatide作為治療療骨質疏鬆症(osteoporosis)的胜肽藥物。Teriparatide主要是藉由皮下注射方式進行給藥,但藥物進入血液中的穩定性常因蛋白脢分解或是肝腎排除,而造成藥物穩定性下降或是藥效減弱。藥物聚乙烯二醇化(PEGylation)可降低肝腎排除的機率,並同時延長藥物在人體作用的循環時間。因此本研究以Teriparatide為目標分子,分別從聚乙烯二醇化的反應條件、初步分離、接枝位置的鑑定、二級結構分析,以及耐酵素降解測試,進一步的以逆相管柱層析分離聚乙烯二醇化胜肽之位置異構物,並透過移動相pH值調控以及溶解度參數(solubility parameters)計算的方式,了解影響異構物分離之間的作用力,提出分離純化聚乙烯二醇化胜肽的優化程序。
在合成 PEGylated Teriparatide方面,本研究藉由調控反應溶劑之pH值可得不同單一PEG5K接枝位置之Teriparatide位置異構物,經由Lysine C切割證明當反應溶劑在pH 6時,PEG5K大多接枝於Teriparatide 的N端;而反應溶劑在pH 8時,PEG5K多接於Teriparatide 的Lys13。此外也發現Teriparatide的結構螺旋性(Helicity)會因PEG5K的接枝而稍微降低,但此二位置異構物抵抗胰蛋白脢水解之能力也因PEG接枝而大幅提升。在逆相層析純化分離N端與Lys13接枝PEG5K的Teriparatide方面,結果發現隨著沖堤溶劑之pH 值提高,由於一級胺質子化程度之差異,導致於異構物間的極性不同,使得此二位置異構物有較佳之分離效果。進一步的以溶解度參數計算發現,可藉由調整溶劑之組成,使二位置異構物與溶劑間之極性項(delta P; polarity term of solubility parameter)的差異增加,以利於基線分離,此結果與調整移動相溶劑pH值之結果相符。由本研究得知,溶劑組成與pH值之調整均可改變分子的極性差異,以利於N端與Lys13接枝PEG的胜肽異構物達基線分離。
Teriparatide, a peptide drug for treating to osteoporosis by once-daily injection, is the 1-34 segment of recombinant human parathyroid hormone. However, Teriparatide is proteolytically instable in human serum resulting in short circulation half-life (less than 1 hour). Therefore, conjugation with polyethylene glycol (PEGylation) to Teriparatide may shield it from proteolysis to prolong the circulation half-life. For the PEGylated Teriparatide, the positional isomers are usually formed with random PEGylation. We obtained the Nter-PEGylated and K13-PEGylated Teriparatide while the synthesis conditions using pH 6.0 and pH8.0 phosphate buffer, respectively. In this investigation, we intended to directly separate the isomers by tuning mobile phase pH in reversed-phase chromatography (RPC) operation. The results showed that the baseline separation of two isomers can be achieved by tuning the pH value of mobile phase from 7.0 to 9.0, and Nter-PEGylated Teriparatide is much retained in RPC. Form the solubility parameter measurement, we examined that the key factor for the separation of these two isomers is the polarity difference rather than hydrogen bonding or dispersion force. From the circular dichroism measurement, the K13- PEGylated Teriparatide with higher helixity shows less retained in RPC. The results are coherent with our previously proposed structure-retention relationships for peptide isomer retention prediction in RPC.
1. Roberts, M.J., M.D. Bentley, and J.M. Harris, Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev, 2002. 54(4): p. 459-76.
2. Veronese, F.M., Peptide and protein PEGylation: a review of problems and solutions. Biomaterials, 2001. 22(5): p. 405-17.
3. Shiraki, M., T. Sugimoto, and T. Nakamura, Effects of a single injection of teriparatide on bone turnover markers in postmenopausal women. Osteoporos Int, 2013. 24(1): p. 219-26.
4. Sowa, H., E. Hamaya, and T. Yamamoto, [Teriparatide: human recombinant parathyroid hormone (1-34) as a daily subcutaneous injection]. Clin Calcium, 2011. 21(1): p. 9-16.
5. Finkelstein, J.S., et al., The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N Engl J Med, 2003. 349(13): p. 1216-26.
6. Deal, C. and J. Gideon, Recombinant human PTH 1-34 (Forteo): An anabolic drug for osteoporosis. Cleveland Clinic Journal of Medicine, 2003. 70(7): p. 585-+.
7. Potts, J.T., Parathyroid hormone: past and present. Journal of Endocrinology, 2005. 187(3): p. 311-325.
8. Jain, A. and S.K. Jain, PEGylation: An approach for drug delivery. A review. Critical Reviews in Therapeutic Drug Carrier Systems, 2008. 25(5): p. 403-447.
9. Meng, F., et al., PEGylation of human serum albumin: reaction of PEG-phenyl-isothiocyanate with protein. Bioconjug Chem, 2008. 19(7): p. 1352-60.
10. Harris, J.M., PEGylation - A "Sunset" technology? - Recent advances and new applications suggest a favorable future for PEGylation technology. Biopharm International-the Applied Technologies of Biopharmaceutical Development, 2004. 17(6): p. 82-82.
11. Roberts, M.J., M.D. Bentley, and J.M. Harris, Chemistry for peptide and protein PEGylation. Advanced Drug Delivery Reviews, 2002. 54(4): p. 459-476.
12. Polson, A., A theory for the displacement of proteins and viruses with polyethylene glycol. Prep Biochem, 1977. 7(2): p. 129-54.
13. Working, P.K., et al., Safety of poly(ethylene glycol) and poly(ethylene glycol) derivatives. Poly(Ethylene Glycol), 1997. 680: p. 45-57.
14. Dou, H., et al., Synthesis and purification of mono-PEGylated insulin. Chem Biol Drug Des, 2007. 69(2): p. 132-8.
15. Kinstler, O.B., et al., Characterization and stability of N-terminally PEGylated rhG-CSF. Pharmaceutical Research, 1996. 13(7): p. 996-1002.
16. Na, D.H. and K.C. Lee, Capillary electrophoretic characterization of PEGylated human parathyroid hormone with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Analytical Biochemistry, 2004. 331(2): p. 322-328.
17. Annathur, G.V., et al., Application of arginine as an efficient eluent in cation exchange chromatographic purification of a PEGylated peptide. Journal of Chromatography A, 2010. 1217(24): p. 3783-3793.
18. Park, E.J., K.C. Lee, and D.H. Na, Separation of positional isomers of mono-poly(ethylene glycol)-modified octreotides by reversed-phase high-performance liquid chromatography. Journal of Chromatography A, 2009. 1216(45): p. 7793-7.
19. Lee, K.C., et al., Isolation, characterization, and stability of positional isomers of mono-PEGylated salmon calcitonins. Pharm Res, 1999. 16(6): p. 813-8.
20. Youn, Y.S., et al., Chromatographic separation and mass spectrometric identification of positional isomers of polyethylene glycol-modified growth hormone-releasing factor (1-29). Journal of Chromatography A, 2004. 1061(1): p. 45-9.
21. Dou, H., et al., Synthesis and purification of mono-PEGylated insulin. Chemical Biology & Drug Design, 2007. 69(2): p. 132-8.
22. Muller, E., et al., Solubility and binding properties of PEGylated lysozyme derivatives with increasing molecular weight on hydrophobic-interaction chromatographic resins. Journal of Chromatography A, 2010. 1217(28): p. 4696-703.
23. Huang, Z., et al., Solid-phase N-terminus PEGylation of recombinant human fibroblast growth factor 2 on heparin-sepharose column. Bioconjug Chem, 2012. 23(4): p. 740-50.
24. Lee, B.K., et al., Solid-phase PEGylation of recombinant interferon alpha-2a for site-specific modification: process performance, characterization, and in vitro bioactivity. Bioconjug Chem, 2007. 18(6): p. 1728-34.
25. Cai, Y. and P. Yue, Separation of exenatide analogue mono-PEGylated with 40 kDA polyethylene glycol by cation exchange chromatography. Journal of Chromatography A, 2011. 1218(39): p. 6953-60.
26. Wang, X.F., et al., Preparation and Characterization of PEGylated Terlipressin. Journal of Applied Polymer Science, 2010. 116(6): p. 3220-3224.
27. Na, D.H. and P.P. DeLuca, PEGylation of octreotide: I. Separation of positional isomers and stability against acylation by Poly(D,L-lactide-co-glycolide). Pharmaceutical Research, 2005. 22(5): p. 736-742.
28. Hildebrand, J.H., Dipole Attraction and Hydrogen Bond Formation in Their Relation to Solubility. Science, 1936. 83(2141): p. 21-4.
29. Hansen, C.M., The Universality of the Solubility Parameter. Industrial and Engineering Chemistry Product Research, 1966. 8(1): p. 2-11.
30. Wong, S.S., Reactive groups of proteins and their modifying meagents in: Chemistry of Protein Conjugation and Cross-Linking. CRC Press, Boston, 1991: p. 13.
31. Kinstler, O.B., et al., Characterization and stability of N-terminally PEGylated rhG-CSF. Pharm Res, 1996. 13(7): p. 996-1002.
32. Na, D.H., et al., Identification of the modifying sites of mono-PEGylated salmon calcitonins by capillary electrophoresis and MALDI-TOF mass spectrometry. J Chromatogr B Biomed Sci Appl, 2001. 754(1): p. 259-63.
33. Na, D.H. and K.C. Lee, Capillary electrophoretic characterization of PEGylated human parathyroid hormone with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Biochem, 2004. 331(2): p. 322-8.
34. Vincentelli, J., et al., Evaluation of the polyethylene glycol-KF-water system in the context of purifying PEG-protein adducts. International Journal of Pharmaceutics, 1999. 176(2): p. 241-249.
35. Plesner, B., et al., Effects of PEG size on structure, function and stability of PEGylated BSA. Eur J Pharm Biopharm, 2011. 79(2): p. 399-405.
36. Svergun, D.I., et al., Solution structure of poly(ethylene) glycol-conjugated hemoglobin revealed by small-angle X-ray scattering: implications for a new oxygen therapeutic. Biophys J, 2008. 94(1): p. 173-81.
37. Na, D.H., et al., Stability of PEGylated salmon calcitonin in nasal mucosa. Journal of Pharmaceutical Sciences, 2004. 93(2): p. 256-61.
38. Fee, C.J. and J.A. Van Alstine, PEG-proteins: Reaction engineering and separation issues. Chemical Engineering Science, 2006. 61(3): p. 924-939.
39. Delgado, C., M. Malmsten, and J.M. Van Alstine, Analytical partitioning of poly(ethylene glycol)-modified proteins. J Chromatogr B Biomed Sci Appl, 1997. 692(2): p. 263-72.
40. Park, E.J., K.C. Lee, and D.H. Na, Separation of positional isomers of mono-poly(ethylene glycol)-modified octreotides by reversed-phase high-performance liquid chromatography. J Chromatogr A, 2009. 1216(45): p. 7793-7.
41. Friedman, M. and J.A. Romersberger, Relative influences of electron-withdrawing functional groups on basicities of amino acid derivatives. J Org Chem, 1968. 33(1): p. 154-7.
42. Kelly, S.M., T.J. Jess, and N.C. Price, How to study proteins by circular dichroism. Biochimica Et Biophysica Acta-Proteins and Proteomics, 2005. 1751(2): p. 119-139.
43. Pellegrini, M., et al., Addressing the tertiary structure of human parathyroid hormone-(1-34). Journal of Biological Chemistry, 1998. 273(17): p. 10420-10427.
44. Tsai, C.W., et al., Structural stability-chromatographic retention relationship on exenatide diastereomer separation. Analytical and Bioanalytical Chemistry, 2012. 404(8): p. 2437-2444.