| 研究生: |
何飛宏 Fei-Hung Ho |
|---|---|
| 論文名稱: |
Teleparallel 理論中之準局域質心距 QUASILOCAL CENTER-OF-MASS FOR GR{II} |
| 指導教授: |
聶斯特
James M. Nester |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | asdf |
| 外文關鍵詞: | sadf |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Nester-Chen 準局域表示式在 Teleparallel 理論及廣義相對論中,可以使能量、動量、角動量及質心距的準局域化 (quasilocalization) 成為協變的 (covariant) ,而此篇論文要討論的是:Teleparallel理論中的準局域質心距,在Nester-Chen 準局域表示式裡佔有重要地位。
Asymptotically flat gravitating system have 10 conserved quantities associated with
Poincar´e symmetry, which lack proper local densities. It has been hoped that the
tetrad formulation and the related teleparallel equivalent of Einstein’s GR (TEGR,
aka GR{II}) could solve this longstanding gravitational energy-momentum localization
problem [23, 32, 33]. Quasilocal expressions are now favored. Earlier quasilocal GR{II}
investigations focused on energy-momentum [32, 33]. Recently our group considered
angular momentum and found that the popular expression (unlike our “covariantsymplectic”
one [5]) was not asymptotically locally Lorentz frame gauge invariant;
it gives the correct result but only in a certain frame [30]. The remaining Poincar´e
quantity, the center-of-mass moment, has been neglected. Obtaining the correct value
for this quantity is a quite severe requirement, hence a new discriminating test for
proposed expressions. We found (independent of the frame gauge choice) that the
GR{II} “covariant-symplectic” Hamiltonian-boundary-term quasilocal expression succeeds
while the usual expression does not give the desired center-of-mass moment.
None of the tetrad expressions gives the desired center-of-mass moment. We conclude
that the teleparallel formulation is definitely better than the tetrad formulation, and
the covariant-symplectic expressions are definitely better than the alternatives. We
also found however that GR{II} has no advantage over GR for energy localization.
[1] R.P. Feynman, R.B. Leighton, and M. Sands. The Feynman Lectures on Physics, vol 1. Reading, Mass.: Addison-Wesley, 1965.
[2] N. Straumann, “General Relativity and Relativistic Astrophysics”, 1984.
[3] C.M. Chen, J.M. Nester and R.S. Tung, Phys. Lett. A 203(1995)5-11.
[4] J. Nester, “The Hamiltonian of Dynamic Geomtry”, 1990, unpublished lecture
notes.
[5] C.M. Chen, J. Nester, “Quasilocal Quantities for General Relativity and Other
Gravity Theories”, Class. Quantum Grav. 16 1279-304, 1999; gr-qc/9809020.
[6] C.M. Chen, J. Nester, “A symplectic Hamiltonian Derivation of Quasilocal
Energy-Momentum for GR ”, Grav.Cosmol. 6 257-270, 2000; gr-qc/0001088.
[7] C.C. Chang, J. Nester and C.M. Chen, “Pesudotensor and Quasilocal Energy-
Momentum”, Phys. Rev. Lett.83 1897-901, 1999; gr-qc/9809040.
[8] J. Nester, “Generalized Pesudotensors and quasilocal quantities”, 2002, yet to be published paper.
[9] J. Nester, and R. S. Tung Gen. Rel. Grav. 27 115-9
[10] J. M. Nester and H. J. Yo “ Symmetric teleparallel general relativity”, Chin. J. Phys. 37 113-117 (1999).
[11] J. M. Nester “ Positive energy via the teleparallel Hamiltonian ” Int. J. Mod. Phys. A4 (1989) 1755-1772.
[12] H. Goldstein, “Classical Mechanics”, 2nd. ed., Addison Wesley, 1980.
[13] J.Y. Lin “Applications of Geometric Algebra to Gravity Theory”, Msc thesis, National Central University, 1997.
[14] C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation, W. H. Freeman and Company, 1973.
[15] F. Gronwald and F. W. Hehl, On the Gauge Aspects of Gravity, gr-qc/9602013
v1, 8Feb 1996.
[16] H. Bondi, M. G. J. van der Burg and A. W. K. Metzner, Gravitational Waves in General Relativity VII. Waves From Axi-symmetric Isolated Systems, Proc. R.
Soc. London A269 (1962) 21-52
[17] R. K. Sachs, Gravitational Waves in General Relativity VII. Waves From Axisymmetric Isolated Systems, Proc. R. Soc. London A270 (1962) 103-126
[18] R. K. Sachs, Asymptotic Symmetries in Gravitational Theory, Phys. Rev. 128
(1962) 2851-2864
[19] Nester J M 1991 Mod. Phys. Lett. A 6 2655-61
[20] Nester J M 1984 The gravitational Hamiltonian Asymptotic Behavior of Mass
and Space-Time Geometry (Lecture Notes in Physics vol 202) ed F Flaherty
(Berlin: Springer) pp 155-63
[21] Regge T and Teitelboim C 1974 Ann. Phys. 88 286-319
[22] Beig R and Murchadha N O 1987 Ann. Phys. 174 463-498
[23] C. Møller, Mat. Fys. Dan. Vid. Selsk. 1, No.10, (1961) 1-50; Ann. Phy. 12 (1961) 118-133.
[24] R. Weitzenb¨ock, Invariantentheorie (Noordho®, Gronningen, 1923).
[25] A. Einstein, Sitzungsber. Preuss. Akad. Wiss. 217 (1928).
[26] K. Hayashi and T. Shirafuji, Phys. Rev. D19, 3524 (1979).
[27] J. A. Schouten, Ricci Calculus, 2nd ed. (Springer-Verlag, London, 1954).
[28] R. Arnowitt, S. Deser and C. W. Misner, The dynamics of general relativity,
in Gravitation: an Introduction to Current Research ed. L Witten (New York:
Wiley) (1962) 227-265
[29] V. C. de Andrade, L. C. T. Guillen and J. G. Pereia “ Gravitational Energy-Momentum Density in Teleparallel Gravity” Phys. Rev. Lett. 84 (2000) 4533-4536
[30] K.H. Vu, “Quasilocal Energy-Momentum and Angular Momentum for Teleparallel
Gravity” (MSc, thesis, NCU, 2000)
[31] F.F. Meng, “Quasilocal Center of Mass Moment for GR” (MSc, thesis, NCU,
2002)
[32] J.W. Maluf, J. Math. Phys. 35 (1994) 335-343; (1995) 4242-47; (1996) 6293-6301
[33] V.C. de Andrade, L.C.T. Guillen and J.G. Pereira, Phys. Rev. Lett. 84 (2000) 4533-36
[34] Bergqvist G, Class. Quantum Grav. 9(1992) 1753-68
[35] Bergqvist G, Class. Quantum Grav. 9(1992) 1917-22
[36] Brown J D and York J W Jr (1993) Phys. Rev. D 47 1407-19;gr-qc/9209012
[37] Dougan A J and Mason L J 1991 Phys. Rev. Lett. 67 2119-22
[38] Hawking S W 1968 J. Math. Phys. 9 598-604
[39] Hayward S A 1994 Phys. Rev. D 49 831-39
[40] Jezierski J and Kijowski J 1990 Gen. Rel. Grav. 22 1283-307
[41] Katz J and Ori A 1990 Class. Quantum. Grav. 7 787-802
[42] Penrose R 1982 Proc. R. Soc. London A 381 53-63
[43] Lau S 1993 Class. Quantum. Grav. 10 2379-99; gr-qc/9307026