跳到主要內容

簡易檢索 / 詳目顯示

研究生: 何飛宏
Fei-Hung Ho
論文名稱: Teleparallel 理論中之準局域質心距
QUASILOCAL CENTER-OF-MASS FOR GR{II}
指導教授: 聶斯特
James M. Nester
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 91
語文別: 英文
論文頁數: 49
中文關鍵詞: asdf
外文關鍵詞: sadf
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Nester-Chen 準局域表示式在 Teleparallel 理論及廣義相對論中,可以使能量、動量、角動量及質心距的準局域化 (quasilocalization) 成為協變的 (covariant) ,而此篇論文要討論的是:Teleparallel理論中的準局域質心距,在Nester-Chen 準局域表示式裡佔有重要地位。


    Asymptotically flat gravitating system have 10 conserved quantities associated with
    Poincar´e symmetry, which lack proper local densities. It has been hoped that the
    tetrad formulation and the related teleparallel equivalent of Einstein’s GR (TEGR,
    aka GR{II}) could solve this longstanding gravitational energy-momentum localization
    problem [23, 32, 33]. Quasilocal expressions are now favored. Earlier quasilocal GR{II}
    investigations focused on energy-momentum [32, 33]. Recently our group considered
    angular momentum and found that the popular expression (unlike our “covariantsymplectic”
    one [5]) was not asymptotically locally Lorentz frame gauge invariant;
    it gives the correct result but only in a certain frame [30]. The remaining Poincar´e
    quantity, the center-of-mass moment, has been neglected. Obtaining the correct value
    for this quantity is a quite severe requirement, hence a new discriminating test for
    proposed expressions. We found (independent of the frame gauge choice) that the
    GR{II} “covariant-symplectic” Hamiltonian-boundary-term quasilocal expression succeeds
    while the usual expression does not give the desired center-of-mass moment.
    None of the tetrad expressions gives the desired center-of-mass moment. We conclude
    that the teleparallel formulation is definitely better than the tetrad formulation, and
    the covariant-symplectic expressions are definitely better than the alternatives. We
    also found however that GR{II} has no advantage over GR for energy localization.

    Table of Contents iv Abstract vi Acknowledgements vii 1 Introduction 1 1.1 Conserved Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Symmetry in Physics . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Center-of-Mass Moment . . . . . . . . . . . . . . . . . . . . . 1 1.2 Conserved Quantities for Gravitation . . . . . . . . . . . . . . . . . . 3 1.2.1 Asymptotically Flat . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Pseudotensor for Energy-Momentum . . . . . . . . . . . . . . 3 1.2.3 Quasilocal Quantities . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 GR{II} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Quasilocal Quantities 9 2.1 General Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Noether’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 The Covariant Hamiltonian Approach . . . . . . . . . . . . . . . . . . 12 2.3.1 Hamiltonian Formalism . . . . . . . . . . . . . . . . . . . . . . 12 2.3.2 Covariant Sympletic Quasilocal Expressions . . . . . . . . . . 14 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 Teleparallel Formulation 16 3.1 Mathematical Conventions . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 Møller’s Tetrad Representation . . . . . . . . . . . . . . . . . . . . . 17 3.2.1 Lagrange Multiplier Method . . . . . . . . . . . . . . . . . . . 18 3.2.2 Boundary Term . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 General Geometric Theory . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.1 General Formulation . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.2 General Relativity . . . . . . . . . . . . . . . . . . . . . . . . 22 3.4 Formulation for GR{II} . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 iv 3.4.1 Changing the Variables . . . . . . . . . . . . . . . . . . . . . . 23 3.4.2 GR{II} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4.3 Quasilocal Quantities for GR{II} . . . . . . . . . . . . . . . . . . 26 4 DN Terms Essential for the Center-of-Mass Moment 29 4.1 Basic Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1.1 Displacement N¹ . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1.2 Asymptotically Flat . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 The DN Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2.1 Various B(N) Forms . . . . . . . . . . . . . . . . . . . . . . . 30 4.2.2 Essential DN Terms . . . . . . . . . . . . . . . . . . . . . . . . 31 4.3 Evaluation of The Center-of-Mass Moment . . . . . . . . . . . . . . . 32 4.3.1 Metric and Coframe . . . . . . . . . . . . . . . . . . . . . . . 32 4.3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5 Conclusion 38 Bibliography 40

    [1] R.P. Feynman, R.B. Leighton, and M. Sands. The Feynman Lectures on Physics, vol 1. Reading, Mass.: Addison-Wesley, 1965.
    [2] N. Straumann, “General Relativity and Relativistic Astrophysics”, 1984.
    [3] C.M. Chen, J.M. Nester and R.S. Tung, Phys. Lett. A 203(1995)5-11.
    [4] J. Nester, “The Hamiltonian of Dynamic Geomtry”, 1990, unpublished lecture
    notes.
    [5] C.M. Chen, J. Nester, “Quasilocal Quantities for General Relativity and Other
    Gravity Theories”, Class. Quantum Grav. 16 1279-304, 1999; gr-qc/9809020.
    [6] C.M. Chen, J. Nester, “A symplectic Hamiltonian Derivation of Quasilocal
    Energy-Momentum for GR ”, Grav.Cosmol. 6 257-270, 2000; gr-qc/0001088.
    [7] C.C. Chang, J. Nester and C.M. Chen, “Pesudotensor and Quasilocal Energy-
    Momentum”, Phys. Rev. Lett.83 1897-901, 1999; gr-qc/9809040.
    [8] J. Nester, “Generalized Pesudotensors and quasilocal quantities”, 2002, yet to be published paper.
    [9] J. Nester, and R. S. Tung Gen. Rel. Grav. 27 115-9
    [10] J. M. Nester and H. J. Yo “ Symmetric teleparallel general relativity”, Chin. J. Phys. 37 113-117 (1999).
    [11] J. M. Nester “ Positive energy via the teleparallel Hamiltonian ” Int. J. Mod. Phys. A4 (1989) 1755-1772.
    [12] H. Goldstein, “Classical Mechanics”, 2nd. ed., Addison Wesley, 1980.
    [13] J.Y. Lin “Applications of Geometric Algebra to Gravity Theory”, Msc thesis, National Central University, 1997.
    [14] C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation, W. H. Freeman and Company, 1973.
    [15] F. Gronwald and F. W. Hehl, On the Gauge Aspects of Gravity, gr-qc/9602013
    v1, 8Feb 1996.
    [16] H. Bondi, M. G. J. van der Burg and A. W. K. Metzner, Gravitational Waves in General Relativity VII. Waves From Axi-symmetric Isolated Systems, Proc. R.
    Soc. London A269 (1962) 21-52
    [17] R. K. Sachs, Gravitational Waves in General Relativity VII. Waves From Axisymmetric Isolated Systems, Proc. R. Soc. London A270 (1962) 103-126
    [18] R. K. Sachs, Asymptotic Symmetries in Gravitational Theory, Phys. Rev. 128
    (1962) 2851-2864
    [19] Nester J M 1991 Mod. Phys. Lett. A 6 2655-61
    [20] Nester J M 1984 The gravitational Hamiltonian Asymptotic Behavior of Mass
    and Space-Time Geometry (Lecture Notes in Physics vol 202) ed F Flaherty
    (Berlin: Springer) pp 155-63
    [21] Regge T and Teitelboim C 1974 Ann. Phys. 88 286-319
    [22] Beig R and Murchadha N O 1987 Ann. Phys. 174 463-498
    [23] C. Møller, Mat. Fys. Dan. Vid. Selsk. 1, No.10, (1961) 1-50; Ann. Phy. 12 (1961) 118-133.
    [24] R. Weitzenb¨ock, Invariantentheorie (Noordho®, Gronningen, 1923).
    [25] A. Einstein, Sitzungsber. Preuss. Akad. Wiss. 217 (1928).
    [26] K. Hayashi and T. Shirafuji, Phys. Rev. D19, 3524 (1979).
    [27] J. A. Schouten, Ricci Calculus, 2nd ed. (Springer-Verlag, London, 1954).
    [28] R. Arnowitt, S. Deser and C. W. Misner, The dynamics of general relativity,
    in Gravitation: an Introduction to Current Research ed. L Witten (New York:
    Wiley) (1962) 227-265
    [29] V. C. de Andrade, L. C. T. Guillen and J. G. Pereia “ Gravitational Energy-Momentum Density in Teleparallel Gravity” Phys. Rev. Lett. 84 (2000) 4533-4536
    [30] K.H. Vu, “Quasilocal Energy-Momentum and Angular Momentum for Teleparallel
    Gravity” (MSc, thesis, NCU, 2000)
    [31] F.F. Meng, “Quasilocal Center of Mass Moment for GR” (MSc, thesis, NCU,
    2002)
    [32] J.W. Maluf, J. Math. Phys. 35 (1994) 335-343; (1995) 4242-47; (1996) 6293-6301
    [33] V.C. de Andrade, L.C.T. Guillen and J.G. Pereira, Phys. Rev. Lett. 84 (2000) 4533-36
    [34] Bergqvist G, Class. Quantum Grav. 9(1992) 1753-68
    [35] Bergqvist G, Class. Quantum Grav. 9(1992) 1917-22
    [36] Brown J D and York J W Jr (1993) Phys. Rev. D 47 1407-19;gr-qc/9209012
    [37] Dougan A J and Mason L J 1991 Phys. Rev. Lett. 67 2119-22
    [38] Hawking S W 1968 J. Math. Phys. 9 598-604
    [39] Hayward S A 1994 Phys. Rev. D 49 831-39
    [40] Jezierski J and Kijowski J 1990 Gen. Rel. Grav. 22 1283-307
    [41] Katz J and Ori A 1990 Class. Quantum. Grav. 7 787-802
    [42] Penrose R 1982 Proc. R. Soc. London A 381 53-63
    [43] Lau S 1993 Class. Quantum. Grav. 10 2379-99; gr-qc/9307026

    QR CODE
    :::