跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊岳峰
YUEH-FENG YANG
論文名稱: 在孔道均一的模板內合成聚苯胺奈米管
指導教授: 楊思明
Sze-Ming Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 91
語文別: 中文
論文頁數: 110
外文關鍵詞: Anodsic membrane, template, polyaniline, polycarbonate track-etched membrane and two step
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    本研究的主要目的是結合導電性高分子及奈米技術兩項領域,將
    導電性高分子-聚苯胺在模板中合成管狀結構。實驗中所選用的模板
    分為無機濾膜-氧化鋁濾膜及高分子濾膜-聚碳酸脂膜,由於兩者的性
    質截然不同,分別藉由兩種模板合成的聚苯胺管性質上有何差異,目
    前並無文獻探討。本研究已藉由FT-IR 鑑定模板中合成的產物確實是
    聚苯胺結構。並且以SEM、TEM 分別觀察兩者模板合成的聚苯胺管表
    面型態之間的差異,證明了氧化鋁濾膜內電化學合成之聚苯胺管表面
    型態較好。再藉由ESR 探討兩者聚苯胺管電子非定域化程度,得到氧
    化鋁濾膜內電化學合成的聚苯胺管有較好的電子非定域化程度。從導
    電度的測試結果得知,200 nm 氧化鋁濾膜內電化學合成之聚苯胺管
    相較於聚苯胺塊材也有較好的導電度值。
    本研究在相同模板下分別以電化學法及化學法合成聚苯胺管,並
    且藉由SEM、TEM、ESR 及導電度討論電化學法及化學法對合成聚苯胺管有何影響。得到電化學法合成之聚苯胺管有較佳的性質。由於聚碳酸脂膜的孔徑變化較多且容易購得,本研究將以多樣規格之聚碳酸脂膜當做模板合成各種孔徑大小之聚苯胺管,並探討其性質發現,在孔徑愈小的聚碳酸脂膜內合成聚苯胺管會有單體溶液及氧化劑擴散的問題存在。最後,本研究自行製作孔徑60 nm、膜厚30 μm 且孔道均一的氧化鋁濾膜,並藉由它當做模板電化學合成60 nm 聚苯胺奈米管。


    Abstract
    The purpose of this study is to combine conducting polymer with
    nanotechnology, by synthesis of polyaniline tubes inside the pore of
    templates. In this study, both the inorganic membrane: Anodsic alumina
    membrane and polymeric membrane: polycarbonate track-etched
    membrane are used as templates to synthesize polyaniline tubes. Owing
    to different characters of the two templates, it may effect the polyaniline
    tubes synthesized in them. However the properties of those tubes
    synthesized in different templates have not been carefully studied so far. FT-IR spectra show that the products synthesized inside the pores
    of templates are polyaniline. The morphologies of polyaniline tubes have
    been compared using SEM and TEM. The morphologies of polyaniline
    tubes synthesized electrochemically in the Anodsic membrane are better
    than the others. ESR spectra reveal that the degree of delocalization of
    those tubes synthesized electrochemically in the Anodsic membrane are
    better. The tubes synthesized inside the pore of Anodsic membrane
    electrochemically show an enhancement of the electronic conductivity
    compared to polyaniline bulk materials.
    The polyaniline tubes by electrochemical synthesis will be shown
    to have better properties compared to those tubes of chemical synthesis in
    the same kind of templates using SEM、TEM、ESR and conductivity
    measurement. With decreasing the pore diameter of polyaniline tubes, the
    degree of delocalization increases.
    Self-organized 60 nm Anodsic alumina membrane has been
    synthesized successfully by two-step anodizing process, and polyaniline
    tubes(rods) of 60 nm has been synthesized electrochemically inside the
    pores.

    中文摘要…………………………………………………………………I 英文摘要………………………………………………………………..II 目錄……………………………………………………………………III 表目錄…………………………………………………………………..VI 圖目錄…………………………………………………………………VII 第一章緒論……………………………………………………………1 1-1 導電性高分子………………………………………………………1 1-1-1 簡介…………………………………………………………1 1-1-2 導電性高分子的聚合方式…………………………………3 1-1-3 導電性高分子的摻雜………………………………………4 1-1-4 共軛導電性高分子之導電理論……………………………5 1-2 聚苯胺………………………………………………………………7 1-2-1 簡介…………………………………………………………8 1-2-2 聚苯胺的結構………………………………………………9 1-2-3 聚苯胺紅外光光譜分析…………………………………..11 1-2-4 聚苯胺的紫外可見光譜…………………………………..12 1-2-5 聚苯胺的電子自旋共振光譜……………………………..13 1-2-6 聚苯胺之合成方法及合成機構…………………………..16 1-2-7 聚苯胺的應用……………………………………………..18 1-3 導電高分子奈米管………………………………………………..21 1-3-1 簡介………………………………………………………..21 1-3-2 導電高分子奈米管的應用及未來展望…………………..26 1-4 氧化鋁濾膜………………………………………………………..29 1-5 聚碳酸脂膜………………………………………………………..33 1-6 研究目的…………………………………………………………..34 第二章實驗部分……………………………………………………..35 2-1 實驗藥品…………………………………………………………..35 2-2 儀器………………………………………………………………..37 2-3 實驗方法…………………………………………………………..39 2-3-1 苯胺單體的還原…………………………………………..39 2-3-2 化學合成…………………………………………………..39 2-3-3 電化學合成………………………………………………..40 2-3-4 氧化鋁濾膜的製備………………………………………..41 2-4 實驗分析…………………………………………………………..43 2-4-1 場發式掃瞄式電子顯微鏡(Field-Emission Scanning Electron Microscope,FE-SEM)…………………………43 2-4-2 霍氏轉換紅外光譜儀分析(Fourier Transform-Infrared Spectrophotometer,FT-IR)……………………………..43 2-4-3 兩點探針導電度測試(Two-Point Conductive Meter)…43 2-4-4 四點探針導電度測試(Four-Point Conductive Meter)..44 2-4-5 穿透式電子顯微鏡測試(Transmission Electron Microscope,TEM)…………………………………………45 2-4-6 電子順磁共振光譜儀(Electron Paramagnetic Resonance Spectrometer,EPR)…………………………45 2-4-7 紫外可見光譜儀(UV-Visible Spectrophotometer , UV-VIS)……………………………………………………46 第三章結果與討論…………………………………………………..47 3-1 商業化氧化鋁濾膜(AnodiscTM membrane filters)……………47 3-2 以AnodiscTM 13, 0.2μm 氧化鋁濾膜電化學合成聚苯胺管……53 V 3-3 以AnodiscTM 13, 0.2 μm 氧化鋁濾膜化學合成聚苯胺管……..59 3-4 實驗室自製氧化鋁濾膜…………………………………………..63 3-5 以自製氧化鋁膜電化學合成60 nm 之聚苯胺管…………………66 3-6 聚碳酸脂膜(Polycarbonate track-etched membrane ,PTM)…68 3-7 以0.2 μm 之聚碳酸脂膜電化學合成聚苯胺管………………...70 3-8 以0.1 μm 及0.05 μm 之聚碳酸脂膜電化學合成聚苯胺奈米管 ……………………………………………………………………73 3-9 聚苯胺管的穿透式電子顯微鏡(TEM)影像圖……………………76 3-10 聚苯胺管之紅外光光譜…………………………………………81 3-11 聚苯胺管之電子自旋共振光譜(Electron Spin Response,ESR) ……………………………………………………………………87 3-12 聚苯胺管的導電度測試…………………………………………96 第四章結論…………………………………………………………100 第五章未來發展……………………………………………………101 附錄……………………………………………………………………102 參考文獻………………………………………………………………103

    參考文獻
    1. H. Shirakawa, E. J. Louis, A.G. MacDiarmid, C. K. Chiang, and A.J.
    Heeger, J. Chem. Soc. Chem. Comm., 1977, 579.
    2. Y R. B. Seymour, New York: Plenum Press, Conductive polymers,
    95-114.
    3. A. Ohtani, M. Abe, M. Ezoe, T. Doi, T. Miyata and A. Miyake, Synth.
    Met., 1993, 55-57, 3696.
    4. B. P. Jelle, G. Hagen, S. Sunde and R. Odegard, Synth. Met., 1993,
    54, 315.
    5. 廖建勛,有機半導體材料與元件,2000
    6. Cao, P. Smith and A. J. Heeger, Synth. Met., 1992, 48, 91.
    7. J. Stejskal and P. Kratochvil, Polymer, 1996, 37 (2), 367-369.
    8. E. C. Venancio, C. A. R. Costa, S.A.S. Machado, A.J. Motheo,
    Electrochemistry Communications, 2001, 3, 229-233.
    9. S. Uemura, K. Teshima, Synth. Met., 1999, 101, 701-702.
    10. S. Uemura, K. Teshima, Synth. Met., 1999, 101, 701-702.
    11. R. B. Seymour, New York: Plenum Press, Conductive polymers,
    171-180.
    12. R. B. Seymour, New York: Plenum Press, Conductive Polymers,
    227-233.
    13. A. O. Patil, Y. Ikenoue, F. Would and A. J. Heeger, J. Am. Chem. Soc.,
    1987, 109, 1858.
    14. R. B. Seymour, New York: Plenum Press, Conductive Polymers,
    149-153.
    15. T. A. Skothrim,“Handbook of Conducting Polymers”, New York:
    Marcel Dekker , 1986, 2, 1195.
    16. T. A. Skothrim , “Handbook of Conducting Polymers”, NewYork:
    Marcel Dekker , 1986, 2, 325.
    17. R. M. Baughman, J. L. Bredas, R. L. Elsenbaumer, and L. W.
    Shacklette, Chem. Rev., 1982, 82, 209.
    18. A. F. Diaz and K. K. Kanazdwd, in “Extended Linear Chain
    Compounds” (G. S. Miller, ed.), Plenum, New York, 1982, p3.
    19. K. Kaneto, S. Ura, K. Yoshino, and Y. Inuishi, Jap. J. of App. Phys.,
    1984, 23, 189.
    20. A. G. MavDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu,
    N. L. D. Somasir, Mol. Cryst. Liq. Cryst., 1985, 121, 173.
    21. H. Letheby, J. Chem. Soc., 1978, 26, 839.
    22. A. S. Wood, “Tapping the power of intrinsic conductivity”, Modern
    Plastic Int., Aug, 1991, 33.
    23. M. C. Bernard, V. T. Bich, Synth. Met., 1999, 101, 811-812.
    24. A. Kitani, M. Kaya, J. Yano, K. Yoshikawa, Synth. Met., 1987, 18,
    341-346.
    25. A. Malinauskas, R. Holze, Synth. Met., 1998, 97, 31-36.
    26. J. C. Chang and A. G. MacDiarmid, Synth. Met., 1986, 13, 193.
    27. W. S. Huang, B. D. Humphrey and A. G. MacDiarmid, J. Chem. Soc.
    Fararday Trans., 1986, 82, 2385.
    28. A. G. Green, and A. E. Woodhead, J. Chem. Soc. Trans., 1910, 97,
    2388.
    29. S. S. Pandey, S. Annapoorni, and B. D. Malhocra, Macromolecules,
    1993, 26, 3190.
    30. T. Ohsaka, Y. Ohnuki, N. Oyama, G. Katagiri and K. Kamisako, J.
    Electroanal. Chem., 1984, 161, 399.
    31. J. Tang, X. Jing, B. Wang and F. Wang, Synth. Met., 1988, 24, 231.
    32. J. Tan, X. Jing, B. Wang and F. Wang, Synth. Met, 1988, 24, 234.
    33. B. Wang J. Tang and F. Wang, Synth. Met. , 1987, 18, 323.
    34. A. P. Monkman and P. Adams, Synth. Met. , 1991, 41, 891.
    35. P. M. McManus, R. J. Cushman and S. C. Yang, J. Phys. Chem. ,
    1987, 91, 744.
    36. M. Inoue, R. E. Navarro and M. B. Inouo, Synth. Met. , 1989, 30,
    199.
    37. G. E. Matsubayashi, T. Doi and T. Tanaka, Synth. Met. , 1989, 33, 99.
    38. F. Genoud, M. Nechtschein, C. Menardo, K. Mizoguchi, J. P. Travers
    and B. Villeret, Synth. Met. , 1989, 29, E211.
    39. J. M. Ginder, A. F. Richter, A. G. MacDiarmid and A. J. Epstein, Sol.
    St. Commun. , 1987, 63, 97.
    40. N. S. Saricifftci, A. J. Heeger and Y. Cao, Phys. Rev. B., 1994, 49(9),
    5988.
    41. K. Mizoguchi, T. Obana, S. Ueno and K. Kume, Synth. Met. , 1993,
    55-57, 601.
    42. A. G. MacDiarmid, J. C. Chiang and A. F. Richter, Synth. Met. , 1987,
    18, 285.
    43. M. Kaya, A. Kitai and K. Sasaki, Chcmistry Letter, 1986, 147.
    44. S. H. Glarum and J. H. Marshall, J. Phys. Chem. , 1986, 90, 6076.
    45. M. E. Jozefowicz, R. Laversanne, H. H. S. Javadi, A. J. Epstein, J. P.
    Pouget, X. Tang and A. G. MacDiarmid, Phys. Rev. B, 1989, 39,
    12958.
    46. F. Genoud, K. Aasmundtveit, E. Houze and M. Nechtschein, Synth.
    Met. , 1995, 69, 193.
    47. T. C. Chang, S. Y. Ho and K. J. Chao, J. Chin. Chem. Soc. , 1992, 39,
    209.
    48. H. H. S. Javadi, R. Laversanne, A. J. Epstein, R. K. Kohli, E. M.
    Scherr and A. G. MacDiarmid, Synth. Met. , 1989, 29, E439.
    49. J. C. Chiang and A. G. MacDiarmid, Synth. Met., 1986, 13, 193.
    50. W. W. Focke, G. E. Wnek and Y. Wei, J. Phys. Chem., 1987, 91,5813
    51. A. G. MacDiarmid, J. C. Chiang, A. F. Richter, N. L. D. Somasiri and
    A. J. Epstein, “polyaniline: Synthesis and Characterization of the
    Emeraldine Oxidation State by Elemental Analysis” in L.
    Alca’cer(ed.) “Conducting Polymer” D. Reidel Pub. Comp.
    Dordrecht, Holland, 1987, 105.
    52. G. E. Asturias, A. G. MacDiarmid, R. P. Mccall and A. J. Epstein,
    Synth. Met., 1989, 29, E157.
    53. M. Inoue, R. E. Navarro and M. B. Inoue, Synth. Met., 1989, 30,
    199-207.
    54. B. Wang, J. Tang, Synth. Met., 1986, 13, 329-334.
    55. K. Koziel, M. Lapkowski and S. Lefrant, Synth. Met., 1995, 69,
    217-218.
    56. P. Rannou, M. Nechtschein, Synth. Met., 1997, 84, 755-756.
    57. M. C. Bernard, V. T. Bich, Synth. Met., 1999, 101, 811-812.
    58. (a) E. M. Genies, A. A. Syed and C. Jsintavis, Mol. Cryst. Liq. Cryst.,
    1985, 121, 181.
    (b) E. M. Genies and C. Tsintavis, J. Electroanal. Chem., 1985, 195,
    109.
    59. Epstein, A. J.; Yue, J. US Patent no. 5137991, 1992.
    60. Joo, J.; Epstein, A. J. Appl Phys Lett, 1994, 65, 2278.
    61. Makela, T.; Pienimaa, S.; Taka, T.; Jussila, S.; Isotalo, H. , Synth. Met.
    1997, 85, 1335.
    62. Racicot, R.; Brown, R.; Yang, S. C. , Synth. Met. , 1997, 85, 1263.
    63. Kin, P. J.; Silverman, D. C.; Jeffreys, C. R. , Synth. Met. 1997, 85,
    1327.
    64. Bernard, M. C.; Goff, H. L.; Joiret, S.; Dinh, N. N.; Toan, N. N.Electrochem Soc, 1999, 146, 995.
    65. Wessling, B.; Posdorfer, J. Electrochim Acta, 1999, 44, 2139.
    66. Malik, M. A.; Galkowski, M. T.; Bala, H.; Grzybowska, B.; Kulesza,
    P. J. Electrochim Acta, 1999, 44, 2157.
    67. Li, C.; Wang, Y.; Wan, M.; Li, S. , Synth. Met. , 1991, 39, 90.
    68. Ozaki, M.; Peebles, D. L.; Weinberger, B. R.; Hegger A. J.;
    MacDiarmid, A. G. , J. Appl. Phys. , 1980, 51, 4252.
    69. Kuo, C. T.; Chiou, W. H. , Synth. Met. , 1997, 88, 23.
    70. Wang, H. L.; MacDiarmid, A. G.; Wang, Y. Z.; Gebler, D. D.; Epstein,
    A. J. , Synth. Met. , 1996, 78, 33.
    71. Wang, Y. Z.; Gebler, D. D.; Lin, L. B.; Blatchford, J. W.; Jessen, S.
    W.; Wang, H. L.; Epstein, A. J. , Appl. Phys. Lett. , 1996, 68, 894.
    72. Chen, S. A.; Chuang, K. R.; Chao, C. I.; Lee, H. T. , Synth. Met. ,
    1996, 82, 207.
    73. Gaponik, N. P.; Talapin, D. V.; Dmitri, V.; Rogach, A. L. , Phys.
    Chem Chem. Phys. , 1999, 1, 1787.
    74. Kobayashi, N.; Yamada, K.; Hirohashi, R. , Electrochim. Acta. , 1992,
    37, 2101.
    75. Morita, M.; J. Poly. Sci., Part B: Polymer Phys. , 1994, 32, 231.
    76. Bernard, M. C.; Goff, H. L.; Wen, Z. , Synth. Met. , 1997, 85, 1347.
    77. Bernard, M. C.; Goff, H. L.; Bich, V. T.; Wen, A. Z. , Synth. Met. ,
    1996, 81, 215.
    78. Barbero, C.; Miras, M. C.; Koetz, R.; Haas, O. , Synth. Met. , 1993,
    55, 1539.
    79. Tsutsumi, H.; Yamashita, S.; Oishi, T. , Synth. Met. , 1997, 85, 1361.
    80. Kumar, G.; Sivashanmugam, A.; Muniyandi, N.; Dhawan, S. K. ,
    Synth. Met. , 1996, 80, 279.
    81. Cui, G.; Lee, J. S.; Kim, S. J.; Nam, H.; Cha, G. S.; Kim, H. D.
    Analyst, 1998, 123, 1855.
    82. Takeda, S. , Thin Solid Film, 1999, 343, 310.
    83. Iijima, S. , Nature, 1991, 354, 56.
    84. Deheer, W. A.; Chatelain, A.; Ugarte, D. Science, 1995, 270, 1179.
    85. Dai, H.; Hafiner, J. H.; Rinzler, A. G.; Colbert, D. T.; Smalley, R. E.
    Nature, 1996, 384, 147.
    86. Ebbesen, T. W. , Phys Today, 1996, June, 26.
    87. Treay, M. M. J.; Ebbesen, T. W.; Gibson, J. M.; Synth. Met. , 1996,
    381, 678.
    88. B. B. Lakshmi, P. K. Dorhout et al. , Chem. Mater. , 1997,9:857.
    89. J. C. Hulteen, V. P. Menon et al. , J. Chem. Soc. , Faraday Trans. ,
    1996, 92:40, 29.
    90. J. D. Klein, R. D. Herrick et al. , Chem. Mater. , 1993,5:902.
    91. V. M. Cepak, J. C. Hulteen et al. , Chem. Mater. , 1997,9:1065.
    92. S. K. Chakarvarti, J. Vettr. J. Micromech Microeng, Chem. Mater.
    1993,3:57.
    93. M. J. Tierney, C. R. Martin., J. Phys. Chem., 1998,93:2878.
    94. Fan, J. H.; Wan, M. X.; Zhu, D. B.; Chang, B. H.; Pan, Z. W.; Xe, S.
    S. , J. Appl. Polymer Sci. , 1999, 74, 2605.
    95. Downs, C.; Nugent, J.; Aiayan, P. M.; Duguette, D. J.; Santhanam, S.
    V. , Adv. Mater. , 1999, 11, 1028.
    96. Cao, H. Q.; Tie, C. Y.; Xu, Z.; Hong, J. M.; Sang, H. , Appl. Phys.
    Lett. , 2001, 78, 1592.
    97. C. R. Martin. , Science, 1994,266:1961.
    98. C. R. Martin. , Acc.Chem.Res. , 1995,28:61
    99. J. C. Hulteen, C. R. Martin. , J.Mater.Chem. , 1997,7:1075.
    100. C.-G. Wu, T. Bein. , Science, 1994,264:1757.
    101. J. Lei, Z. Cai et al. , Synth. Met. , 1992,46:53.
    102. Marc Delvaux, Jannick Duchet, Pierre-Yves Stavaux, Roger Legras
    and Sophie Demoustier-Champagne; Synth. Met. , 2000, 113,275-280.
    103. Alexander Kros, Roeland J. M. Nolte and Nico A. J. M.
    Sommerdijk; Adv. Mater. , 2002, 14, 23, 1779.
    104. Qiu, H. J.; Wan, M. X.; Matthews, B.; Dai, L. M. ,
    Macromolecules , 2001, 34, 675.
    105. Ozin, G. A. , Adv. Mater. , 1992, 4, 612.
    106. Kanatzidis, M. G.; Tonge, L. M.; Marks, T. J.; Marcy, H. O.;
    Kannewurf, C. R. , J. Am. Chem. Soc. , 1987, 109, 3797.
    107. Kanatzidis, M. G.; Wu, C. G.; Marcy, H. O.; Kannewurf, C. R. , J.
    Am. Chem. Soc. , 1989, 111, 4139.
    108. Bein, T.; Enzel, P.; Beuneu, F.; Zuppiroli, L. , Adv. Chem. Ser. ,
    1990, 226, 433.
    109. Martin, C. R. , Acc. Chem. Res. , 1995, 259, 957.
    110. Jerome, C.; Demoustier-Champagne, S.; Legras, R.; Jerome, R. ,
    Chem. Eur. J. , 2000, 6, 3089.
    111. Wu, C. G.; Bein, T. , Science , 1994, 266, 1013.
    112. I. Willner, R. Blonder, E. Katz, A. Stocker, A. F. Buckmann, J. Am.
    Chem. Soc. , 1996,118, 5310.
    113. F. Keller, M. S. Hunter, D. L. Robinson, J. Electrochem. Soc., 1953,
    100, 411.
    114. D. Routkevitch, A. A. Tager, J. Haruyama, D. Almawlawi, M.
    Moskovits, J. M. Xu, IEEE Trans. Electron Devices, 1996, 43, 1646.
    115. C. G. J. Koopal, B. Eijsma, R. J. M. Nolte, Synth. Met. , 1993, 55,
    3689.
    116. Hideki Masuda and Kenji Fukuda, Science, 1995, 268, 1466
    117. Jpn. J. Appl. Phys. , 1996, 35, L126-L129
    118. Journal of Applied Physics, 1998, 84, 6023.
    119. Hideki Masuda, Haruki Yamada, Masahiro Satoh and Hidetaka
    Asoh, Appl. Phys. Lett. , 1997, 71(19), 2770
    110
    120. Wu, C. N.; Chao, K. J.; Tsai, T. G.; Chiou, Y. H.; Shih, H. C. , Adv.
    Mater. , 1996, 8, 1008.
    121. Pradhan, B. K.; Toba, T.; Kyotani, T.; Tomita, A. , Chem. Mater. ,
    1998, 10, 2510.
    122. Kyotani, T.; Tsai, L. F.; Tomita, A. , Chem. Mater. , 1996, 8, 2109.
    123. Li, J.; Moskovits, M.; Haslett, T. L. , Chem. Mater. , 1998, 10,
    1963.
    124. Wu, Q.; Xue, Z. Qi, Z.; Wang, F. , Polymer, 2000, 41, 2029.

    QR CODE
    :::