| 研究生: |
林怡婕 Y-Jie Lin |
|---|---|
| 論文名稱: |
脈衝雷射沉積技術製作薄膜質子傳輸型固態氧化物燃料電池 Fabrication of thin-film proton–conducting solid oxide fuel cells by using pulsed laser deposition |
| 指導教授: | 李勝偉 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 雷射脈衝沉積法 、固態氧化物燃料電池 、電解質 、陽極功能層 |
| 外文關鍵詞: | anode functional layer |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今許多研究在致力於將固態氧化燃料電池的操作溫度降低,並希望以減少電解質的厚度來獲得較高的電池電性。為有效降低電解質厚度,本實驗利用雷射脈衝沉積法,製備以BaCe0.6Zr0.2Y0.2O3-δ為基礎之電解質,此氧化物在中溫(600-800℃)範圍內具有穩定之質子傳導性,可降低操作溫度,製備出的電解質的厚度可下降到小於5 μm,縮短質子傳遞路徑,且具有柱狀紋理的微結構,可降低晶界電阻。為製備良好的電解質層,在不同的基板加熱溫度下,進行雷射鍍膜,並觀察其顯微結構以及利用XRD進行成相分析,藉此找到適合做為固態氧化燃料電池的電解質之鍍膜參數,並以此參數進行電池製備。在基板上製備電解質層前,為填補兩層間的孔洞,並降低因材料上的不匹配會產生薄膜附著性差的問題,先以雷射脈衝沉積法鍍上陽極功能層,再進行電解質製備。陰極的製作是使用雷射脈衝沉積法,製作具有孔洞的La0.6Sr0.4Co0.2Fe0.8O3-δ。完整的電池具有陽極(基板)、陽極功能層、電解質、陰極四層結構,對電池進行電池能量密度的量測,並觀察電池的顯微結構。為降低電解質與陽極間的孔洞與分離情形,加入退火等步驟,以改善電池電化學表現及能量密度。但昇降溫的步驟會造成電解質的龜裂,因此去除退火步驟,避免裂縫阻擋質子傳輸,進而提升電池效能。
Solid oxide fuel cells (SOFCs) have drawn significant attention owing to their high efficiency. Reducing the SOFC operating temperature can be achieved by preparing thin film electrolytes. In this work, SOFCs with thin BaCe0.6Zr0.2Y0.2O3-δ (BCZY) electrolytes were fabricated by pulsed laser deposition (PLD). The thickness of BCZY could be reduced to about 3 μm.The NiO- BaCe0.6Zr0.2Y0.2O3-δ (NiO-BCZY) which played the role of anode functional layers were deposited on NiO-BCZY anode supports by PLD due to the surface pores of supports might cause defects during electrolyte deposition. After reduction of NiO to Ni at 800℃, the anode functional layers became porous while preserve fine adhesion with electrolyte. This study has also investigated the microstructure morphologies of La0.6Sr0.4Co0.2Fe0.8 (LSCF) cathode films via the PLD process. LSCF films deposited at 600℃ under 100 mtorr of oxygen pressure have dense structure when those films deposited at room temperature under the same background pressure have porous structure. A single cell had four layers : anode substrate、anode functional layer、electrolyte and cathode. The single cell with four layer and without post-annealing after deposition of each layer generated maximum power densities of 38.3 mWcm−2 at 800 °C and open circuit voltage of 0.9 V.
[1]R. O'Hayre, S. Cha, W. Colella, F. Prinz, “Fuel cell fundamentals.”, John Wiley & Sons, 3 (2016).
[2]G. Wand, “Fuel Cells History.”, Johnson Matthey plc, 14, 13-16 (2008).
[3]W. Grove, “On Voltaic Series and the Combination of Gases by Platinum.”, Philosophical Magazine and Journal of Science, 14, 127-130 (1839).
[4]W. Grove, “On a Gaseous Voltaic Battery.”, Philosophical Magazine and Journal of Science, 21, 417–420 (1842).
[5]G. Hoogers, “Fuel cell technology handbook.”, CRC press, (2002).
[6]黃鎮江,“燃料電池”,全華科技圖書股份有限公司,(2005)
[7]EG&G Technical Services, Inc., “Fuel Cell Handbook.”, Lulu.com, 7, (2016)
[8]S. M. Haile, “Fuel cell material and components.”, Acta Materialia, 51, 5981-6000 (2003).
[9]B. Steele, A. Heinzel, “Materials for fuel-cell technologies.”, Nature, 414, 224-231 (2001).
[10]C.A. Cortes-Escobedo, J. Muñoz-Saldaña, A. M. Bolarín-Miró, F. S. Jesús, “Determination of strontium and lanthanum zirconates in YPSZ-LSM mixtures for SOFC.”, Journal of Power Sources, 180, 209-214 (2008).
[11]L. Bi, S. Zhang, S. Fang, Z. Tao, R. Peng, W. Liu, “A novel anode supported BaCe0.7Ta0.1Y0.2O3−δ electrolyte membrane for proton-conducting solid oxide fuel cell.”, Electrochemistry Communications, 10, 1598-1601 (2008).
[12]C. Sun, U. Stimming, “Recent anode advances in solid oxide fuel cells.” Journal of Power Sources, 171,247-260 (2007).
[13]A. Boudghene Stambouli, E. Traversa, “Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy.”, Renewable and Sustainable Energy Reviews, 6, 433–455 (2002).
[14]Y. Lin, R. Ran, Y. Zheng, Z. Shao, W. Jin, N. Xu, J. Ahnb, “Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell.”, Journal of Power Sources, 180, 15-22 (2008).
[15]N. Q. Minh, “Ceramic fuel cells.”, Journal of the American Ceramic Society, 76, 563-588 (1993).
[16]H. Iwahara, “High temperature proton conducting oxides and their applications to solid electrolyte fuel cells and steam electrolyzer for hydrogen production.”, Solid State Ionic, 28-30, 573-578 (1988).
[17]E. Fabbri, “Materials challenges toward proton-conducting oxide fuel cells: a critical review.”, Chemical Society Reviews, 39, 4355–4369 (2010).
[18]P. Schaaf, “Laser processing of materials.”, Springer, (2010).
[19]S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, X. Wang, “Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum.”, Physical Review B, 71, 033406 (2005).
[20]J. Perrière, C. Boulmer-Leborgne, R. Benzerga, S. Tricot, “Nanoparticle formation by femtosecond laser ablation.”, Journal of Physics D: Applied Physics, 40, 7069–7076 (2007)
[21]J. E. Geusic, H. M. Marcos, L. G. Van Uitert, “Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets.”, Applied Physics Letters, 4, 182-184 (1964)
[22]N. Nasani, D. Ramasamy, S. Mikhaleva, A. V. Kovalevsky, D. P. Fagg, “Fabrication and electrochemical performance of a stable anode supported thin BaCe0.4Zr0.4Y0.2O3‑δ electrolyte protonic ceramic fuel cell.”, J. Power Sources, 278, 582−589 (2015).
[23]M. Liu, J. Gao, X. Liu, G. Meng, “High performance of anode supported BaZr0.1Ce0.7Y0.2 O3‑δ (BZCY) electrolyte cell for IT-SOFC.”, International Journal of Hydrogen Energy, 36, 13741-13745 (2011)
[24]S. Lee, I. Park, H. Lee, D. Shin, “Continuously gradient anode functional layer for BCZY based proton-conducting fuel cells.”. International Journal of Hydrogen Energy, 39 (26), 14342−14348 (2014).
[25]D. Pergolesi, E. Fabbri, A. D’Epifanio, E. D. Bartolomeo, A. Tebano, S. Sanna, S. Licoccia, G. Balestrino, E. Traversa, “High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition.”, Nature Materials, 9, 846-852 (2010).
[26]E. Fabbri, D. Pergolesi, A. D'Epifanio, E. D. Bartolomeo, G. Balestrino, S. Licoccia, E. Traversa, “Design and fabrication of a chemically-stable proton conductor bilayer electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs).” Energy & Environmental Science, 1, 355-359 (2008).
[27]E. Fabbri, D. Pergolesi, A D’Epifanio, E. D Bartolomeo, G. Balestrino, S. Licoccia, E. Traversa, “Improving the performance of high temperature protonic conductor (HTPC) electrolytes for solid oxide fuel cell (SOFC) applications.” Key Engineering Materials, 421-422,336-339 (2009).
[28]E. Fabbri, A. D'Epifanio, S. Sanna, E. D. Bartolomeo, G. Balestrino, S. Licocciab, E. Traversa, “A novel single chamber solid oxide fuel cell based on chemically stable thin films of Y-doped BaZrO3 proton conducting electrolyte.” Energy & Environmental Science, 3, 618-621 (2010).
[29]D. Pergolesi, E. Fabbri, E. Traversa, “Chemically stable anode-supported solid oxide fuel cells based on Y-doped barium zirconate thin films having improved performance.” Electrochemistry Communications, 12, 977-980 (2010).
[30]K. Bae, D. Y. Janga, H. J. Jung, J. W. Kim, J. Son, J. H. Shim, “Micro ceramic fuel cells with multilayered yttrium-doped barium cerate and zirconate thin film electrolytes.” Journal of Power Sources, 248, 1163-1169 (2014).
[31]K. Bae, D. Y. Jang, H. Noh, H. J. Kim, J. Hong, K. J. Yoon, B. Kim, J. Son, J. H. Shim, “Performance of protonic ceramic fuel cell with thin film yttrium doped barium zirconate electrolyte.” ECS Transactions, 68, 2659-2662 (2015).
[32]K. Bae, S. Lee, D. Y. Jang, H. J. Kim, H. Lee, D. Shin, J. Son, and J. H. Shim, “High-performance protonic ceramic fuel cells with thin-film yttrium-doped barium cerate–zirconate electrolytes on compositionally gradient anodes.” ACS Applied Materials & Interfaces, 8, 9097-9103 (2016).
[33]K. Bae, H. Noh, D. Y. Jang, J. Hong, H. Kim, K. J. Yoon, J. Lee, B. Kim, J. H. Shim, J. Son, “High-performance thin-film protonic ceramic fuel cells fabricated on anode supports with a non-proton-conducting ceramic matrix.” Journal of Materials Chemistry A, 4, 6395-6403 (2016).
[34]K. Bae, D. H. Kim, D. Y. Jang, H. J. Choi, J. Son, J. H. Shim, “Effects of non-proton-conducting anode supports on the performance of thin-film protonic ceramic fuel cells.” ECS Transactions, 78, 1945-1951 (2017).