跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林怡婕
Y-Jie Lin
論文名稱: 脈衝雷射沉積技術製作薄膜質子傳輸型固態氧化物燃料電池
Fabrication of thin-film proton–conducting solid oxide fuel cells by using pulsed laser deposition
指導教授: 李勝偉
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 57
中文關鍵詞: 雷射脈衝沉積法固態氧化物燃料電池電解質陽極功能層
外文關鍵詞: anode functional layer
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今許多研究在致力於將固態氧化燃料電池的操作溫度降低,並希望以減少電解質的厚度來獲得較高的電池電性。為有效降低電解質厚度,本實驗利用雷射脈衝沉積法,製備以BaCe0.6Zr0.2Y0.2O3-δ為基礎之電解質,此氧化物在中溫(600-800℃)範圍內具有穩定之質子傳導性,可降低操作溫度,製備出的電解質的厚度可下降到小於5 μm,縮短質子傳遞路徑,且具有柱狀紋理的微結構,可降低晶界電阻。為製備良好的電解質層,在不同的基板加熱溫度下,進行雷射鍍膜,並觀察其顯微結構以及利用XRD進行成相分析,藉此找到適合做為固態氧化燃料電池的電解質之鍍膜參數,並以此參數進行電池製備。在基板上製備電解質層前,為填補兩層間的孔洞,並降低因材料上的不匹配會產生薄膜附著性差的問題,先以雷射脈衝沉積法鍍上陽極功能層,再進行電解質製備。陰極的製作是使用雷射脈衝沉積法,製作具有孔洞的La0.6Sr0.4Co0.2Fe0.8O3-δ。完整的電池具有陽極(基板)、陽極功能層、電解質、陰極四層結構,對電池進行電池能量密度的量測,並觀察電池的顯微結構。為降低電解質與陽極間的孔洞與分離情形,加入退火等步驟,以改善電池電化學表現及能量密度。但昇降溫的步驟會造成電解質的龜裂,因此去除退火步驟,避免裂縫阻擋質子傳輸,進而提升電池效能。


    Solid oxide fuel cells (SOFCs) have drawn significant attention owing to their high efficiency. Reducing the SOFC operating temperature can be achieved by preparing thin film electrolytes. In this work, SOFCs with thin BaCe0.6Zr0.2Y0.2O3-δ (BCZY) electrolytes were fabricated by pulsed laser deposition (PLD). The thickness of BCZY could be reduced to about 3 μm.The NiO- BaCe0.6Zr0.2Y0.2O3-δ (NiO-BCZY) which played the role of anode functional layers were deposited on NiO-BCZY anode supports by PLD due to the surface pores of supports might cause defects during electrolyte deposition. After reduction of NiO to Ni at 800℃, the anode functional layers became porous while preserve fine adhesion with electrolyte. This study has also investigated the microstructure morphologies of La0.6Sr0.4Co0.2Fe0.8 (LSCF) cathode films via the PLD process. LSCF films deposited at 600℃ under 100 mtorr of oxygen pressure have dense structure when those films deposited at room temperature under the same background pressure have porous structure. A single cell had four layers : anode substrate、anode functional layer、electrolyte and cathode. The single cell with four layer and without post-annealing after deposition of each layer generated maximum power densities of 38.3 mWcm−2 at 800 °C and open circuit voltage of 0.9 V.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1 燃料電池簡介 1 1.2 固態氧化物燃料電池 (SOFC) 2 1.2.1 SOFC之原理[6-9] 3 1.2.2 SOFC之優缺點 4 1.2.3 SOFC之陽極探討 5 1.2.4 SOFC之陰極探討 5 1.2.5 SOFC之電解質探討 6 1.3 脈衝雷射沉積技術 7 1.3.1 脈衝雷射沉積技術原理 7 1.3.2 PLD雷射源種類 7 1.3.3 PLD的優缺點 8 1.3.4 薄膜沉積原理 9 1.4 文獻回顧 10 1.5 研究動機 12 第二章 實驗流程 13 2.1 實驗流程 13 2.2 靶材製備 13 2.3 陽極基板製備 14 2.4 脈衝雷射沉積系統 14 2.4.1 真空腔體 14 2.4.2 鍍膜氣體環境 15 2.4.3 雷射源 16 2.4.4 雷射光路 17 2.4.5 靶材載台 18 2.4.6 基板載台 19 2.4.7 Fluence 計算 20 2.4.8 鍍率計算與校正 21 2.5 分析儀器 23 2.5.1 X光繞射 (X-Ray Diffraction) 23 2.5.2 掃描式電子顯微鏡 (Scanning Electron Microscopy) 23 2.5.3 電解質能量密度測量 23 2.5.4 電化學阻抗頻譜法(EIS) 24 第三章 結果與討論 25 3.1 材料分析 25 3.1.1 陽極基板 25 3.1.2 以PLD製作NiO-BCZY 27 3.1.3 以PLD製作BCZY 29 3.1.4 以PLD製作LSCF 32 3.2 電池量測 34 3.2.1 電性量測 36 3.2.2 EIS測量 38 3.3 結論 39 3.4 未來展望 39 第四章 參考資料 40

    [1]R. O'Hayre, S. Cha, W. Colella, F. Prinz, “Fuel cell fundamentals.”, John Wiley & Sons, 3 (2016).
    [2]G. Wand, “Fuel Cells History.”, Johnson Matthey plc, 14, 13-16 (2008).
    [3]W. Grove, “On Voltaic Series and the Combination of Gases by Platinum.”, Philosophical Magazine and Journal of Science, 14, 127-130 (1839).
    [4]W. Grove, “On a Gaseous Voltaic Battery.”, Philosophical Magazine and Journal of Science, 21, 417–420 (1842).
    [5]G. Hoogers, “Fuel cell technology handbook.”, CRC press, (2002).
    [6]黃鎮江,“燃料電池”,全華科技圖書股份有限公司,(2005)
    [7]EG&G Technical Services, Inc., “Fuel Cell Handbook.”, Lulu.com, 7, (2016)
    [8]S. M. Haile, “Fuel cell material and components.”, Acta Materialia, 51, 5981-6000 (2003).
    [9]B. Steele, A. Heinzel, “Materials for fuel-cell technologies.”, Nature, 414, 224-231 (2001).
    [10]C.A. Cortes-Escobedo, J. Muñoz-Saldaña, A. M. Bolarín-Miró, F. S. Jesús, “Determination of strontium and lanthanum zirconates in YPSZ-LSM mixtures for SOFC.”, Journal of Power Sources, 180, 209-214 (2008).
    [11]L. Bi, S. Zhang, S. Fang, Z. Tao, R. Peng, W. Liu, “A novel anode supported BaCe0.7Ta0.1Y0.2O3−δ electrolyte membrane for proton-conducting solid oxide fuel cell.”, Electrochemistry Communications, 10, 1598-1601 (2008).
    [12]C. Sun, U. Stimming, “Recent anode advances in solid oxide fuel cells.” Journal of Power Sources, 171,247-260 (2007).
    [13]A. Boudghene Stambouli, E. Traversa, “Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy.”, Renewable and Sustainable Energy Reviews, 6, 433–455 (2002).
    [14]Y. Lin, R. Ran, Y. Zheng, Z. Shao, W. Jin, N. Xu, J. Ahnb, “Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell.”, Journal of Power Sources, 180, 15-22 (2008).
    [15]N. Q. Minh, “Ceramic fuel cells.”, Journal of the American Ceramic Society, 76, 563-588 (1993).
    [16]H. Iwahara, “High temperature proton conducting oxides and their applications to solid electrolyte fuel cells and steam electrolyzer for hydrogen production.”, Solid State Ionic, 28-30, 573-578 (1988).
    [17]E. Fabbri, “Materials challenges toward proton-conducting oxide fuel cells: a critical review.”, Chemical Society Reviews, 39, 4355–4369 (2010).
    [18]P. Schaaf, “Laser processing of materials.”, Springer, (2010).
    [19]S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, X. Wang, “Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum.”, Physical Review B, 71, 033406 (2005).
    [20]J. Perrière, C. Boulmer-Leborgne, R. Benzerga, S. Tricot, “Nanoparticle formation by femtosecond laser ablation.”, Journal of Physics D: Applied Physics, 40, 7069–7076 (2007)
    [21]J. E. Geusic, H. M. Marcos, L. G. Van Uitert, “Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets.”, Applied Physics Letters, 4, 182-184 (1964)
    [22]N. Nasani, D. Ramasamy, S. Mikhaleva, A. V. Kovalevsky, D. P. Fagg, “Fabrication and electrochemical performance of a stable anode supported thin BaCe0.4Zr0.4Y0.2O3‑δ electrolyte protonic ceramic fuel cell.”, J. Power Sources, 278, 582−589 (2015).
    [23]M. Liu, J. Gao, X. Liu, G. Meng, “High performance of anode supported BaZr0.1Ce0.7Y0.2 O3‑δ (BZCY) electrolyte cell for IT-SOFC.”, International Journal of Hydrogen Energy, 36, 13741-13745 (2011)
    [24]S. Lee, I. Park, H. Lee, D. Shin, “Continuously gradient anode functional layer for BCZY based proton-conducting fuel cells.”. International Journal of Hydrogen Energy, 39 (26), 14342−14348 (2014).
    [25]D. Pergolesi, E. Fabbri, A. D’Epifanio, E. D. Bartolomeo, A. Tebano, S. Sanna, S. Licoccia, G. Balestrino, E. Traversa, “High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition.”, Nature Materials, 9, 846-852 (2010).
    [26]E. Fabbri, D. Pergolesi, A. D'Epifanio, E. D. Bartolomeo, G. Balestrino, S. Licoccia, E. Traversa, “Design and fabrication of a chemically-stable proton conductor bilayer electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs).” Energy & Environmental Science, 1, 355-359 (2008).
    [27]E. Fabbri, D. Pergolesi, A D’Epifanio, E. D Bartolomeo, G. Balestrino, S. Licoccia, E. Traversa, “Improving the performance of high temperature protonic conductor (HTPC) electrolytes for solid oxide fuel cell (SOFC) applications.” Key Engineering Materials, 421-422,336-339 (2009).
    [28]E. Fabbri, A. D'Epifanio, S. Sanna, E. D. Bartolomeo, G. Balestrino, S. Licocciab, E. Traversa, “A novel single chamber solid oxide fuel cell based on chemically stable thin films of Y-doped BaZrO3 proton conducting electrolyte.” Energy & Environmental Science, 3, 618-621 (2010).
    [29]D. Pergolesi, E. Fabbri, E. Traversa, “Chemically stable anode-supported solid oxide fuel cells based on Y-doped barium zirconate thin films having improved performance.” Electrochemistry Communications, 12, 977-980 (2010).
    [30]K. Bae, D. Y. Janga, H. J. Jung, J. W. Kim, J. Son, J. H. Shim, “Micro ceramic fuel cells with multilayered yttrium-doped barium cerate and zirconate thin film electrolytes.” Journal of Power Sources, 248, 1163-1169 (2014).
    [31]K. Bae, D. Y. Jang, H. Noh, H. J. Kim, J. Hong, K. J. Yoon, B. Kim, J. Son, J. H. Shim, “Performance of protonic ceramic fuel cell with thin film yttrium doped barium zirconate electrolyte.” ECS Transactions, 68, 2659-2662 (2015).
    [32]K. Bae, S. Lee, D. Y. Jang, H. J. Kim, H. Lee, D. Shin, J. Son, and J. H. Shim, “High-performance protonic ceramic fuel cells with thin-film yttrium-doped barium cerate–zirconate electrolytes on compositionally gradient anodes.” ACS Applied Materials & Interfaces, 8, 9097-9103 (2016).
    [33]K. Bae, H. Noh, D. Y. Jang, J. Hong, H. Kim, K. J. Yoon, J. Lee, B. Kim, J. H. Shim, J. Son, “High-performance thin-film protonic ceramic fuel cells fabricated on anode supports with a non-proton-conducting ceramic matrix.” Journal of Materials Chemistry A, 4, 6395-6403 (2016).
    [34]K. Bae, D. H. Kim, D. Y. Jang, H. J. Choi, J. Son, J. H. Shim, “Effects of non-proton-conducting anode supports on the performance of thin-film protonic ceramic fuel cells.” ECS Transactions, 78, 1945-1951 (2017).

    QR CODE
    :::