| 研究生: |
廖芝淇 Chih-chi Liao |
|---|---|
| 論文名稱: |
酵母菌粒線體Gln-tRNAGln的形成 Formation of Gln-tRNAGln in the yeast mitochondria |
| 指導教授: |
王健家
Chien-chia Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | tRNA合成酶 、酵母菌 、粒線體 |
| 外文關鍵詞: | tRNA synthetase, yeast, mitochondria |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在細胞中,有兩種合成Gln-tRNAGln的路徑,一種是和GlnRS有關的直接路徑,另一種是和轉胺酶GatFAB有關的間接路徑。之前的研究發現,在酵母菌Saccharomyces cerevisiae中,部分細胞質的GlnRS會被送到粒線體中,因此他們推測酵母菌粒線體可能是利用直接路徑來合成Gln-tRNAGln,但是最近的研究發現酵母菌粒線體是經由間接路徑來合成Gln-tRNAGln,那麼酵母菌粒線體中GlnRS執行甚麼功能有待進一步的研究。在本篇論文中,我們利用報導基因試驗以及免疫螢光分析來標定酵母菌GlnRS的粒線體標的訊號,實驗結果顯示: 粒線體標的訊號不在其胺基端,而是位於GlnRS中靠近活化區的一段序列。這是一個非常特別的例子,GlnRS的標的訊號在蛋白質進到粒線體後不會被切除。另外,我們發現,在EcGlnRS的胺基端接上Arc1p可以提供GLN4 剔除株生長所必須的酵素活性,若進一步在此融合蛋白質的胺基端加上一段粒線體標的訊號則此融合蛋白質可以取代粒線體內間接合成Gln-tRNAGln的路徑,這些發現突顯了基因平行轉移的可能性,利用直接合成Gln-tRNAGln的路徑取代間接合成路徑。
There are two pathways for Gln-tRNAGln formation in the cell, a direct pathway, which involves GlnRS, and an indirect pathway, which involves a GatFAB transamidase. In Saccharomyces cerevisiae, early research indicated that a portion of cytoplasmic GlnRS was transported into the mitochondria. It was thus proposed that the yeast mitochondria may employ a direct pathway to form Gln-tRNAGln. However, a recent study argued that an indirect pathway is actually involved in the synthesis of mitochondrial Gln-tRNAGln. As a result, the true biological function of the imported GlnRS in the mitochondria is still elusive. In this study, we used reporter gene assays, and immunofluorescence analysis to map the mitochondrial targeting signal of yeast GlnRS. Our results showed that the signal is located at an internal segment close to the active site of the enzyme. This might be one of few examples of mitochondrial matrix proteins that use an uncleavable internal sequence as the mitochondrial targeting signal. On the other hand, we found that fusion of Arc1p to EcGlnRS enables the bacterial enzyme to rescue the growth defect of a GLN4 knockout strain. Further fusion of a mitochondrial targeting signal to the fusion enzyme Arc1p-EcGlnRS enabled the enzyme to replace the indirect pathway for Gln-tRNAGln formation in the mitochondria. These findings underscore the possibility of a horizontal transfer event, where an indirect pathway for Gln-tRNAGln formation is substituted for by a direct pathway.
Arnez, J. G., and Moras, D. (1997) Structural and functional considerations of the aminoacylation reaction. Trends Biochem Sci. 22: 211-216.
Asahara, H. and Uhlenbeck, O.C. (2002) The tRNA specificity of Thermus thermophilus EF-Tu. Proc. Natl. Acad. Sci. 99: 3499-3504.
Biswas T.K., and Getz G.S. 2002 Import of yeast mitochondrial transcription factor (Mtf1p) via a nonconventional pathway. J Biol Chem. 277: 45704-45714.
Brown, J.M., and Doolittle, W.F. (1999) Gene descent, duplication and horizontal transfer in the evolution of glutamyl- and glutaminyl-tRNA synthetases. J. Mol. Evol. 49: 485-495.
Cavadini, P., Gakh, O., and Isaya, G. (2002) Protein import and processing reconstituted with isolated rat liver mitochondria and recombinant mitochondrial processing peptidase. Methods. 26: 298-306.
Chang, K.J., and Wang, C.C. (2004) Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. J Biol Chem. 279: 13778-13785.
Deinert, K., Fasiolo, F., Hurt, E.C., and Simos, G. (2001) Arc1p organizes the yeast aminoacyl-tRNA synthetase complex and stabilizes its interaction with the cognate tRNAs. J. Biol. Chem. 276: 6000-6008.
Deniziak M., Sauter C., Becker H.D., Paulus C.A., Giegé R., and Kern D. (2007) Deinococcus glutaminyl-tRNA synthetase is a chimer between proteins from an ancient and the modern pathways of aminoacyl-tRNA formation. Nucleic Acid Res. 35: 1421-1431.
Diekert, K., Kispal, G., Guiard, B., and Lill, R. (1999) An internal targeting signal directing proteins into the mitochondrial intermembrane space. Proc. Natl. Acad. Sci. USA 96: 11752-11757.
Frechin, M., Senger, B., Brayé, M., Kern, D., Pierre Martin, R., and Dominique Becker, H. (2009) Yeast mitochondrial Gln-tRNAGln is generated by a GatFAB-mediated transamidation pathway involving Arc1p-controlled subcellular sorting of cytosolic GluRS. Genes & Dev. 23: 1119-1130.
Galani, K., Großhans, H., Deinert, K., Hurt, E.C., and Simos, G. (2001) The intracellular location of two aminoacyl-tRNA synthetases depends on complex formation with Arc1p. EMBO J. 20: 6889–6898.
Galani, K., Hurt, E., and Simos, G. (2005) The tRNA aminoacylation co-factor Arc1p is excluded from the nucleus by an Xpo1p-dependent mechanism. FEBS Lett. 579: 969-975.
Ibba, M., Hong, K.W., and Söll, D. (1996) Glutaminyl-tRNA synthetase: from genetics to molecular recognition. Genes Cells. 1: 421-427.
Ibba, M., Hong, K.W., Sherman, J.M., Sever, S., and Söll, D. (1996) Interactions between tRNA identity nucleotides and their recognition sites in glutaminyl-tRNA synthetase determine the cognate amino acid affinity of the enzyme. Proc. Natl. Acad. Sci. USA 93: 6953-6958.
Ibba, M., and Söll, D. (2004) Aminoacyl-tRNAs: setting the limits of the genetic code. Genes & Dev. 18: 731-738.
Lamour, V., Quevillon, S., Diriong, S., N’Guyen, V.C., Lipinski, M., and Mirande, M. (1994) Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer. Proc. Natl. Acad. Sci. USA 91: 8670-8674.
Martinis, S.A., Plateau, P., Cavarelli, J., and Florentz, C. (1999) Aminoacyl-tRNA synthetases: a family of expanding functions. EMBO J. 18: 4591–4596.
Mulero, J.J., Rosenthal, j.k., and Fox, T.D. (1994) PET112, a Saccharomyces cerevisiae nuclear gene required to maintain rho+ mitochondrial DNA. Curr. Genet. 25: 299-304.
Neupert, W. (1997) Protein import into mitochondria. Annu. Rev. Biochem. 66:863-917.
Nureki, O., O’Donoghue, P., Watanabe, N., Ohmori, A., Oshikane, H,. Araiso, Y., Sheppard, K., Söll, D. and Ishitani, R. (2010) Structure of an archaeal non-discriminating glutamyl-tRNA synthetase: a missing link in the evolution of Gln-tRNAGln formation. Nucleic Acid Res. 38:7286-7297.
Paschen, S.A., and Neupert, W. (2001) Protein import into mitochondria. IUBMB Life. 52: 101-112.
Pujol, C., Bailly, M., Kern, D., Maréchal-Drouard, L., Becker, H., and Duchêne A.M. (2008) Dual-targeted tRNA-dependent amidotransferase ensures both mitochondrial and chloroplastic Gln-tRNAGln synthesis in plants. Proc. Natl. Acad. Sci. 105: 6481-6485.
Ribas de Pouplana, L., and Schimmel, P. (2001) Two classes of tRNA synthetases suggested by sterically Compatible dockings on tRNA acceptor stem. Cell 104: 191-193.
Rinehart, J., Krett, B., Rubio, M.A., Alfonzo, J.D., and Söll, D. (2005) Saccharomyces cerevisiae imports the cytosolic pathway for Gln-tRNA synthesis into the mitochondrion. Genes & Dev. 19: 583–592.
Rogers M.J., Weygand-Durašević I., Schwob E., Sherman J.M., Rogers K.C., Adachi T., Inokuchi H., and Söll, D. (1993) Selectivity and specificity in the recognition of tRNA by E. coli glutaminyl-tRNA synthetase. Biochimie 75: 1083-1090.
Sanyal, A., and Getz, G.S. (1995) Import of transcription factor MTF1 into yeast mitochondria takes place through an unusual pathway. J Biol Chem. 270: 11970-11976.
Schimmel, P. (1987) Aminoacyl tRNA synthetases : general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annu. Rev. Biochem. 56: 125-158.
Schön, A., Gamini Kannangara, C., Gough, S., and Söll, D. (1988) Protein biosynthesis in organelles requires misaminoacylation of tRNA. Nature. 331: 187-190.
Sheppard K., Yuan J., Hohn M.J., Jester B., Devine K.M., and Söll, D. (2008) From one amino acid to another: tRNA-dependent amino acid biosynthesis. Nucleic Acid Res. 36: 1813-1825.
Sikorski, R.S., and Hieter, P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27.
Simos, G., Sauer, A., Fasiolo, F., and Hurt, E.C. (1998) A conserved domain within Arc1p delivers tRNA to aminoacyl-tRNA synthetases. Mol. Cell 1: 235-242.
Simos, G., Segref, A., Fasiolo, F., Hellmuth, K., Shevchenko, A., Mann, M., and C.Hurt, E. (1996) The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl- and glutamyl-tRNA synthetases. EMBO J. 15: 5437-5448.
Stan, T., Brix, J., Schneider-Mergener J., Pfanner, N., Neupert, W., and Rapaport, D. (2003) Mitochondrial protein import: recognition of internal import signals of BCS1 by the TOM complex. Mol. Cell. Biol. 23: 2239-2250.
Szymañski, M., Deniziak, M., and Barciszewski, J. (2000) The new aspects of aminoacyl-tRNA synthetases. Acta Biochim Pol. 47: 821-834.
Tzagoloff, A., Gatti, D., and Gampel, A. (1990) Mitochondrial aminoacyl-tRNA synthetases. Prog Nucleic Acid Res Mol Biol. 39: 129-158.
Tzagoloff, A., and Myers, A.M. (1986) Genetics of mitochondrial biogenesis. Annu. Rev. Biochem. 55: 249-285.
葉耀榮 (2008) 探討酵母菌Glutaminyl-tRNA synthetase對於粒線體功能之影響。 中央大學碩士論文
張嘉珮 (2007) 酵母菌使用罕見轉譯起始密碼的可能性探討。 中央大學碩士論文