跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳泓凱
Hong-Kai Chen
論文名稱: 基於貝氏之財務區間時間序列的建模方法
A Bayesian-based approach for modeling financial interval time series
指導教授: 孫立憲
Li-Hsien Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 67
中文關鍵詞: 可信區間馬可夫鏈蒙地卡羅最大概似估計方法標準普爾500指數
外文關鍵詞: credible interval, Markov Chain Monte Carlo, Maximum likelihood estimation, S&P 500 index
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 從經濟和金融的觀點來看,數據分析和預測一直是關鍵和重要的議題。在實際應用中,大多數模型只考慮股票的收盤價,導致關鍵數據(如最高價和最低價)被排除在外。因此,為了改善基於關鍵數據的參數估計和預測,我們依賴於幾何布朗運動(GBM)框架,利用開盤價、收盤價、最高價和最低價的概似函數來估計參數σ2,並運用反射原理和Girsanov定理。本研究旨在通過馬可夫鏈蒙特卡羅(MCMC)演算法對參數進行估計,並將其與最大概似估計(MLE)方法進行比較,同時使用95-分位數可信區間來評估該演算法在模擬研究中對所提出模型的適用性,並使用相對誤差(RE)指標比較模擬結果。最後,在實證分析中,所提出的方法在將符號數據應用於標準普爾500指數 (S&P 500)的真實數據方面展現了良好的表現。


    From an economic and financial perspective, data analysis and prediction are always critical and crucial topics. In real application, most models only consider the closing price of stocks, leading to the exclusion of crucial data, such as the highest and lowest prices. Hence, in general, in order to improve parameter estimation and prediction based on the addition crucial data, relied on the Geometric Brownian Motion (GBM) framework, we obtain the likelihood
    function of the opening, closing, highest, and lowest prices to estimate the parameter σ2 by employing the reflection principle and the Girsanov theorem. The purpose of this study is to investigate the performance through the Markov Chain Monte Carlo (MCMC) algorithm for parameter estimation and compare it with the maximum likelihood estimation (MLE)
    method. Additionally, we use the 95th percentile credible interval to assess the suitability of the algorithm for the proposed model in the simulation study and to compare the simulation results of each model using the relative error (RE) measure. Finally, in the empirical analysis, the proposed method demonstrates a strong track record in applying symbolic data to real-world data for the S&P 500 index.

    1 Introduction . . . . . . . . . . 1 2 Method and model . . . . . . . . 4 2.1 Model . . . . . . . . . . . . . 4 2.2 Method . . . . . . . . . . . . . 7 2.3 One-step-ahead prediction . . . . 8 3 Simulations . . . . . . . . . . . . 9 4 Empirical studies . . . . . . . . . 16 5 Conclusion and future extensions . . . 22 5.1 Conclusion . . . . . . . . . . . . . 22 5.2 Future extensions . . . . . . . . . . 22 5.2.1 Asymmetry model study . . . . . . . . 22 5.2.2 Change point detection . . . . . . . . 23 A Proofs . . . . . . . . . . . . . . . . . . 24 A.1 Proof of Remark 1 . . . . . . . . . . . . 24 A.2 Proof of Remark 2 . . . . . . . . . . . . 24 A.3 Proof of Remark 3 . . . . . . . . . . . . 26 A.4 Proof of Remark 4 . . . . . . . . . . . . 26 A.5 Proof of Proposition 1 . . . . . . . . . . 27 B Figures for Simulation Studies . . . . . . . 30 C Figures for Empirical Studies . . . . . . . . 36 D Codes . . . . . . . . . . . . . . . . . . . . 39 D.1 Simulation Studies . . . . . . . . . . . . . 39 D.2 Empirical Studies . . . . . . . . . . . . . . 46 Reference . . . . . . . . . . . . . . . . . . . . 52

    [1] Lin, E.M.H., Chen, C.W.S., Gerlach, R. (2012) Forecasting volatility with asymmetric smooth transition dynamic range models, International Journal of Forecasting, 28, 384–399.
    [2] Gerlach, R. and Chen, C.W.S. (2016) Bayesian expected shortfall forecasting incorporating the intraday range, Journal of Financial Econometrics, 14, 128-158.
    [3] Chen, C.W.S., Gerlach, R., Hwang, RBK, and McAleer, M (2012) Forecasting Value-atRisk using nonlinear regression quantiles and the intra-day range, International Journal of Forecasting, 28, 557–574.
    [4] Billard, L. and Diday, E. (2003). From the Statistics of Data to the Statistics of Knowledge: Symbolic Data Analysis. Journal of the American Statistical Association. 98, 470–487. https://doi.org/10.1198/016214503000242.
    [5] Billard, L. and Diday, E. (2006). Symbolic Data Analysis: Conceptual Statistics and Data Mining 1st ed.. John Wiley and Sons, New Jersey.
    [6] Neto, E.A.L. and De Carvalho, F.A.T. (2007). Centre and Range Method for Fitting a Linear Regression Model to Symbolic Interval Data. Computational Statistics and Data
    Analysis. 52, 1500–1515.
    [7] Arroyo, J., Gonza´lez-Rivera, G., and Mate´, C. (2011). Forecasting with Interval and Histogram Data: Some Financial Applications. Handbook of Empirical Economics and Finance. 247–279.
    [8] Rodrigues, P. M. and Salish, N. (2011). Modeling and forecasting interval time series with Threshold models: An application to S&P500 Index returns. Working papers.
    [9] Lin, L.C. and Sun, L.H. (2019). Modeling financial interval time series. PLoS One. 14, e0211709.
    [10] Shreve, S.E. (2004). Stochastic Calculus for Finance II: Continuous-Time Models 2nd ed. Springer, New York.
    [11] Hastings, W.K. (1970). Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika. 57, 97–109.
    [12] Ialongo, C. (2019). Confidence Interval For Quantiles and Percentiles. Biochemia Medica. 29, 5-17.
    [13] Helfrick, A.D. and Cooper, W.D. (1996). Modern Electronic Instrumentation and Measurement Techniques. Prentice Hall of India, Delhi.
    [14] Kim, K.Y., and Shin, Y. (2018). A Distance Boundary with Virtual Nodes for the Weighted Centroid Localization Algorithm. Sensors. 18, 1054.
    [15] Adams, R.P. and MacKay, D.J. (2007). Bayesian Online Changepoint Detection. https: //doi.org/10.48550/arXiv.0710.3742
    [16] Kuo, D.H. (2022). Online Change Point Detection under a Copula-Based Markov Chain Model for Normal Sequential Data. Graduate Institute of Statistics, National Central University.
    [17] Yamanishi, K. and Takeuchi, J.I. (2022, July 23-26). A unifying framework for detecting outliers and change points from non-stationary time series data. 2002 Proceedings of the Eight ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, Alta, Canada. 676-681. https://doi.org/10.1145/775047.775148.
    [18] Zachos, I. (2018). Bayesian On-line Change-point Detection. Department of Computer Science, University of Warwick.
    [19] Katser, I., Kozitsin, V., Lobachev, V., and Maksimov, I. (2021). Unsupervised Offline Changepoint Detection Ensembles. Applied Sciences. 11, 4280.
    [20] Manca, G. and Fay, A. (2022, March 29-31). Off-Line Detection of Abrupt and Transitional Change Points in Industrial Process Signals Conference presentation. 2022 4th International Conference on Applied Automation and Industrial Diagnostics (ICAAID). Hail, Saudi Arabia. https://ieeexplore.ieee.org/document/9799507

    QR CODE
    :::