跳到主要內容

簡易檢索 / 詳目顯示

研究生: 龍緒祥
Syu-Siang Long
論文名稱: 應用於正交分頻多工通訊中之低複雜度多輸入多輸出偵測器設計與實現
Design and Implementation of Low-Complexity Multiple-Input Multiple-Output Detectors for OFDM Communications
指導教授: 薛木添
Muh-Tian Shiue
口試委員:
學位類別: 博士
Doctor
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 100
中文關鍵詞: 多輸入多輸出快速排序分佈型K最佳連續干擾消除適應性調整
外文關鍵詞: Multiple-Input Multiple Output, Fast sorting, Distributed K-Best, Successive Interference Cancellation, Adaptively Self-adjusting
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出應用於正交分頻多工通訊系統中之低複雜度多輸入多輸出偵測器之演算法架構與電路實現。首先根據傳統K最佳演算法中所需之排序運算,我們提出了兩種能夠改善多條候選路徑排序效率之快速排序演算法,分別為平行切割合併法以及平行氣泡排序法以增加排序的效率及縮短排序消耗的時間週期。並且提出改良型K最佳演算法,在不損失錯誤率效能下將傳統K最佳解碼過程中的每層皆需排序修改為每兩層才需排序,以減少排序動作消耗的運算複雜度。接下來以分佈型K最佳演算法為基礎,發展具有高資料吞吐率之高能源效率低複雜度之多輸入多輸出偵測器。由於分佈型K最佳演算法不需要排序動作之優點,結合多層管線式電路架構,能夠達到高資料吞吐量之要求。再結合連續干擾消除演算法,將解碼後段過程中之拜訪節點進一步降低,以達成高能源效率。並且基於模組化管線式電路架構之彈性,能夠在不損失電路利用率及保持相同資料吞吐率下支援2x2、4x4以及8x8之多種天線組態。最後由於傳統K最佳演算法針對不同通道條件均採用相同K值,我們提出一套適應性K值自我調整演算法,能夠依照通道環境的優劣減少不必要的拜訪結點。在解碼過程中並不需要計算通道環境之訊雜比即可快速決定每一層合適的K值。以上提出之演算法依據演算法特性與應用需求,硬體實現架構分別有管線式與迴圈式,其中管線式架構能夠達到高速資料輸出之要求以及高能源效率,並且彈性支援2的冪次多重天線組態。迴圈式架構能夠適用於更複雜的天線組態並享有電路資源的可重複利用彈性,適用於較複雜演算法之實現。在此我們利用CMOS 90奈米製程,實現了三種不同演算法之硬體設計,支援天線數從2x2、4x4、8x8以及2x2至8x8,資料調變可以支援BPSK、QPSK、16-QAM以及64-QAM,K值大小為5、10手動調整以及2、5、10自我適應性調整。


    This thesis proposes design and implementation of low-complexity multiple-input multiple-output detectors for orthogonal frequency division multiplexing communication systems. In the conventional K-Best algorithm, sorting operation of Partial Euclidean Distance (PED) values occupies a lot of computing complexity. First, we propose two types of fast sorting algorithms to deal with the large amount of enumerated candidate paths: Parallel Slice Merge Algorithm (PSMA) and Parallel Bubble Slice Sort (PBSS). Furthermore, modified K-Best (MKB) algorithm is proposed to perform sorting operation for every two layers, thanks to the proposed sorting algorithms. The MKB algorithm can reduce the computing complexity of sorting operation in the conventional K-Best algorithm without losing BER performance. Next, by taking the advantage of sorting free characteristic of Distributed K-Best (DKB) algorithm, we develop high throughput MIMO detector with multi-stage pipelined architecture. To further reducing the number of visiting nodes and achieving high power efficiency, we combine DKB algorithm with Successive Interference Cancelling (SIC) algorithm.
    By applying pipelined hardware architecture and modular functional blocks, the proposed DKB+SIC MIMO detector can maintain high circuit utilization and constant throughput supporting 2x2, 4x4 and 8x8 antenna configurations.
    Finally, we propose an adaptively K-value self-adjusting mechanism to reduce unnecessary visiting nodes, that is, saving computing complexity when channel environment is good.
    Without calculating the exact SNR value of the channel, we can rapidly decide the K-value in each decoding layer.
    According to the system applications, the proposed algorithms can be implemented into pipelined or iterative hardware architecture. The pipelined circuit can perform high throughput rate with high power efficiency and flexibly support power of two antenna configurations. The iterative circuit architecture can widely adapt various antenna configuration and is suitable for more complicated algorithms. We have implemented three kinds of MIMO detector design in CMOS 90nm process that supports 2x2, 4x4, 8x8 and from 2x2 to 8x8 antenna configurations; multiple data modulations from BPSK, QPSK, 16-QAM to 64-QAM, switch-able 5, 10 K-values and 2, 5, 10 self-adjusting.

    摘要.................................................................................................... i Page Abstract.............................................................................................. iii 誌謝.................................................................................................... v 目錄....................................................................................................vii 圖目錄................................................................................................ xi 表目錄................................................................................................xiii 一、Introduction.................................................................. 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Thesis Organization . . . . . . . . . . . . . . . . . . 4 二、Spatial Multiplexing MIMO System............................. 5 2.1 MIMO system model . . . . . . . . . . . . . . . . . 5 2.1.1 Real-valued decomposed model . . . . . . . . . . . . 6 2.1.2 Evaluation of complex and real-valued system model 7 2.2 Channel capacity . . . . . . . . . . . . . . . . . . . . 9 2.3 Linear MIMO decoder . . . . . . . . . . . . . . . . . 9 2.3.1 Zero-Forcing (ZF) . . . . . . . . . . . . . . . . . . . 9 2.3.2 Minimum-mean square error (MMSE) . . . . . . . . 10 2.4 Sphere decoding algorithm . . . . . . . . . . . . . . 10 2.5 K-Best algorithm . . . . . . . . . . . . . . . . . . . . 11 三、A Modied K-Best MIMO Detector.............................15 3.1 The proposed modied K-best algorithm . . . . . . . 16 3.2 Code-book enumeration . . . . . . . . . . . . . . . . 17 3.3 Proposed fast sorting algorithms . . . . . . . . . . . 19 3.3.1 Parallel-Slice Merge Algorithm (PSMA) . . . . . . . 19 3.3.2 Parallel Bubble-Slice Sort (PBSS) . . . . . . . . . . . 20 3.4 Hardware implementation . . . . . . . . . . . . . . . 20 3.4.1 Supporting 2  2 􀀀 6  6 antenna-congurable MIMO detector . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.5 Design comparison . . . . . . . . . . . . . . . . . . . 21 3.6 Design summary . . . . . . . . . . . . . . . . . . . . 22 四、High Throughput Multi-Antenna Congurable MIMO Detector .............................................................................................. 25 4.1 Distributed K-best (DKB) algorithm . . . . . . . . . 25 4.2 High throughput DKB MIMO Detector design . . . . 27 4.2.1 Architecture and circuit design . . . . . . . . . . . . 28 4.3 The proposed DKB+SIC algorithm . . . . . . . . . . 29 4.3.1 Simulation Results . . . . . . . . . . . . . . . . . . . 30 4.4 Hardware implementation of DKB+SIC MIMO detector . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.4.1 Shift Multiplier . . . . . . . . . . . . . . . . . . . . . 34 4.4.2 First Child Unit (FCU) . . . . . . . . . . . . . . . . 36 4.4.3 Next Child Unit (NCU) . . . . . . . . . . . . . . . . 38 4.4.4 Congurable Architecture . . . . . . . . . . . . . . . 39 4.4.5 Successive Interference Cancellation (SIC) Unit . . . 42 4.5 Chip Implementation Results . . . . . . . . . . . . . 42 4.5.1 Analysis of the low-complexity design . . . . . . . . 43 4.5.2 Chip Comparison Results . . . . . . . . . . . . . . . 44 4.6 Design summary . . . . . . . . . . . . . . . . . . . . 45 五、Adaptive K-values Self-Adjusting MIMO Detector....... 47 5.1 The proposed algorithm . . . . . . . . . . . . . . . . 48 5.1.1 Adaptive SIC scheme . . . . . . . . . . . . . . . . . 49 5.1.2 Adaptive K-value adjusting . . . . . . . . . . . . . . 50 5.1.3 BER performance evaluation . . . . . . . . . . . . . 50 5.1.4 Computing complexity analysis . . . . . . . . . . . . 51 5.2 Hardware implementation . . . . . . . . . . . . . . . 52 5.2.1 Folding circuit architecture . . . . . . . . . . . . . . 52 5.2.2 First child unit . . . . . . . . . . . . . . . . . . . . . 52 5.2.3 Next child unit . . . . . . . . . . . . . . . . . . . . . 53 5.3 Design summary and chip comparison . . . . . . . . 54 5.4 Design summary . . . . . . . . . . . . . . . . . . . . 55 六、Soft Output MIMO Detector ........................................ 61 6.1 Review of Soft-output algorithm . . . . . . . . . . . 61 6.1.1 Log Likelihood for MIMO Systems . . . . . . . . . . 62 七、Conclusion and Future Work ........................................ 65

    [1] 3G LTE & IMT-Advanced Service, HSN 2006, February 22-24, 2006,
    Dr. Hyeon Woo Lee, Global Standards & Research, SAMSUNG
    ELECTRONICS.
    [2] J. Mietzner, R. Schober, L. Lampe, W. H. Gerstacker, and P. A.
    Hoeher, Multiple-Antenna Techniques for Wireless Communications
    - A Comprehensive Literature Survey, IEEE commun. survey
    & tutorials, vol. 11, no. 2, pp. 87105, second quarter, 2009.
    [3] S. M. Alamouti, A simple transmit diversity technique for wireless
    communications, IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp.
    14511458, Oct. 1998.
    [4] L. C. Godara, Application of antenna arrays to mobile communications,
    part II: Beam-forming and direction-of-arrival considerations,
     Proc. IEEE, vol. 85, no. 8, pp. 11951245, Aug. 1997.
    [5] M. O. Damen, A. Chkeif, and J.-C. Belore, Lattice code decoder
    for space-time codes, IEEE Commun. Lett., vol. 4, no. 5, pp. 161
    163, May 2000.
    [6] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, Closest point search
    in lattices, IEEE Trans. Inform. Theory, vol. 48, no. 8, pp. 2201
    2214, Aug. 2002.
    [7] S. Bäro, J. Hagenauer, and M. Witzke, Iterative detection of MIMO
    transmission using a list-sequential (liss) detector, in Proc. IEEE
    Int. Conf. Commun., 2003, pp. 26532657.
    [8] K.-W. Wong, C.-Y. Tsui, R. S.-K Cheng, and W.-H. Mow, A VLSI
    architecture of a K-best lattice decoding algorithm for MIMO channels,
     in Proc. ISCAS, May 2002, pp. 273276.
    [9] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and
    H. Bolcskei, VLSI implementation of MIMO detection using the
    sphere decoding algorithm, IEEE J. Solid-State Circuits, vol. 40,
    pp. 15661577, July 2005.
    [10] C. Studer, A. Burg, and H. Bolcskei, Soft-output sphere decoding:
    Algorithms and VLSI implementation, IEEE J. Sel. Areas Com-
    mun., vol. 26, no. 2, pp. 290300, 2008.
    [11] M. Wenk, M. Zellweger, A. Burg, N. Felber, and W. Fichtner,
    K-best MIMO detection VLSI architectures achieving up to 424
    Mbps, in Proc. ISCAS, 2006, pp. 11511154.
    [12] Z. Guo and P. Nilsson, Algorithm and implementation of the Kbest
    sphere decoding for MIMO detection, IEEE J. Sel. Areas
    Commun., vol. 24, no. 3, pp. 491503, Mar. 2006.
    [13] M. Shabany and P. G. Gulak, Scalable VLSI architecture for K-best
    lattice decoders, in Proc. ISCAS, 2008, pp. 940943.
    [14] C.-H. Yang, and D. Markovi¢, A exible DSP architecture for
    MIMO sphere decoding, IEEE Trans. Circuit and Syst.I: Reg-
    ular Papers, vol. 56, no. 10, pp. 23012314, Oct. 2009.
    [15] C.-H. Liao, T.-P. Wang, and T.-D. Chiueh, A 74.8 mW soft-output
    detector IC for 88 spatial-multiplexing MIMO communications,
    IEEE J. Solid-State Circuits, vol. 45, no. 2, pp. 411421, Feb. 2010.
    [16] B. M. Hochwald and S. ten Brink, Achieving near-capacity on a
    multiple-antenna channel, IEEE Trans. Commun., vol. 51, no. 3,
    pp. 389399, Mar. 2003.
    [17] E. Perahia, R. Stacey, Next Generation Wireless
    LANs:Throughtput, Robustness, and Reliability in 802.11n
    Cambridge University Press, Sep. 2008.
    [18] K. E. Batcher, "Sorting networks and their applications," Proceeding
    of AFIPS Spring, Joint Computing Conference, 1968, pp. 307-
    314.
    [19] Z. Guo and P. Nilsson, "A VLSI architecture of the Schnorr-Euchner
    decoder for MIMO systems," in Proceeding of IEEE CAS Symposium
    on Emerging Technologies, June 2004, pp. 65-68.
    [20] J. Jie, C. Tsui, and W. Mow, "A threshold-based algorithm and
    VLSI architecture of a K-best Lattice Decoder for MIMO Systems,"
    in Proceeding of IEEE ISCASO 2005, May 2005, pp. 3359-3362.
    [21] N. Moezzi-Madani, T. Thorolfsson, and W. Davis, "A low-area
    exible mimo detector for wi/wimax standards," in DATE '10:
    Proceedings of the 2010 Design, Automation and Test Conference,
    march 2010, pp. 1633-1636.
    [22] S. Chen and T. Zhang, "Low power soft-output signal detector design
    for wireless MIMO communication systems," in Proceeding of
    International Symposium on Low Power Electronics and Design, pp.
    232-237, 2007.
    [23] M. Shabany, K. Su, and P. G. Gulak, A piplined scalable highthroughput
    implementation of a near-ML K-best complex lattice
    decoder, in Proc. ICASSP, 2008, pp. 31733176.
    [24] C.-J. Huang, C.-W. Yu, and H.-P. Ma, A power-ecient congurable
    low-complexity MIMO detector, IEEE Trans. Circuit and
    Syst.I: Regular Papers, vol. 56, no. 2, pp. 485496, Feb. 2009.
    [25] P.-Y. Tsai, W.-T. Chen, X.-C. Lin, and M.-Y. Huang, A 44 64-
    QAM Reduced-Complexity K-Best MIMO Detector up to 1.5Gbps,
    in Proc. ISCAS, 2010, pp. 39533956.
    [26] L. Liu, F. Ye, X. Ma, T. Zhang, and J. Ren, A 1.1-Gb/s 115-pJ/bit
    Congurable MIMO Detector Using 0.13-m CMOS technology,
    IEEE Trans. Circuit and Syst.II: Express Briefs, vol. 57, no. 9,
    pp. 701705, Sept. 2010.
    [27] C.-A. Shen, and A. M. Eltawil, A Radius Adaptive K-Best Decoder
    With Early Termination: Algorithm and VLSI Architecture, IEEE
    Trans. Circuit and Syst.I: Regular Papers, vol. 57, no. 9, pp. 2476
    2486, Sept. 2010.
    [28] T.-W. Kim, and I.-C. Park, Small-Area and Low-Energy K-Best
    MIMO Detector Using Relaxed Tree Expansion and Early Forwarding,
     IEEE Trans. Circuit and Syst.I: Regular Papers, vol. 57, no.
    10, pp. 27532761, Oct. 2010.
    [29] S. Mondal, A. Eltawil, C.-A. Shen, and K. N. Salama, Design
    and Implementation of a Sort-Free K-Best Sphere Decoder, IEEE
    Trans. Very Large Scale Integr. (VLSI) Syst., vol. 18, no. 10, pp.
    14971501, Oct. 2010.
    [30] M. Shabany, and P. G. Gulak, A 675 Mbps, 44 64-QAM K-Best
    MIMO Detector in 0.13 m CMOS, IEEE Trans. Very Large Scale
    Integr. (VLSI) Syst., vol. 20, no. 1, pp. 135147, Jan. 2012.
    [31] M. Mahdavi, and M. Shabany, Novel MIMO Detection Algorithm
    for High-Order Constellations in the Complex Domain, IEEE
    Trans. Very Large Scale Integr. (VLSI) Syst., accepted Apr. 2012.
    [32] M. Shabany, and P. G. Gulak, A 0.13m CMOS 655Mb/s 44
    64-QAM K-best MIMO detector, in Proc. IEEE Int. Solid-State
    Circuits Conf., Feb. 2009, pp. 256257.
    [33] H. Kawai, K. Higuchi, N. Maeda, and M. Sawahashi, Adaptive
    Control of Surviving Symbol Replica Candidates in QRM-MLD for
    OFDM MIMO Multiplexing, IEEE Journal on Selected Areas in
    Communications, Vol. 24, pp. 1130-1140, 2006.
    [34] H. L. Lin, R. Chang, and H. L. Chen "A High-Speed SDM-MIMO
    Decoder Using Ecient Candidate Searching for Wireless Communication,"
    IEEE Transactions on Circuits and Systems II: Express
    Briefs, vol. 55, pp. 289-293, 2008.
    [35] R. Shariat-Yazdi and T. Kwasniewski, "Congurable k-best mimo
    detector architecture," 3rd International Symposium on Communication
    , Control and Signal Processing, pp. 15651569, 2008.
    [36] Y. S. Cho, J. Kim, W. Y. Yang, and C.-G. Kang, "MIMO-OFDM
    Wireless Communications with MATLAB," wiley, 2010.

    QR CODE
    :::