| 研究生: |
黃健瑋 Chien-Wei Huang |
|---|---|
| 論文名稱: |
2009-2010 年東沙背景站氣膠光學、輻射及來源之探討 Optical, radiative, and source Characteristics of aerosols at Dongsha Atmospheric Background Station |
| 指導教授: |
林能暉
Neng-Huei Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 大氣物理研究所 Graduate Institute of Atmospheric Physics |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 單次散射反照率 、氣膠光學厚度 、輻射驅動力 |
| 外文關鍵詞: | Single Scattering Albedo, Radiative Forcing, Aerosol Optical Depth |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為利用太陽輻射儀(CIMELs) 與多重濾鏡旋轉輻射儀(MFRSR) 於2009年9月至2010年8月在東沙空氣品質背景測站(5 m;20.70°N,116.73°E)之觀測,探討氣膠光學特性。季節分析顯示氣膠光學厚度(AOD500nm)和Angstrom exponent 高值主要發生在春季(3-5月),推論受長程傳輸的生質燃燒氣膠影響為主。特別地,二月Angstrom exponent 平均已達1.6,配合MODIS衛星觀測火點分布資料,可知二月東南亞已有明顯生質燃燒情形,此影響之時間點與觀測結果吻合。
進一步分析氣膠單次散射反照率(Single Scattering Albedo, SSA)、不對稱性因子(Asymmetry Factor)及細微粒氣膠比例(Fine Mode Fraction, FMF),結果顯示東沙背景站以細粒氣膠為大多數,且具有生質燃燒/城市污染來源氣膠特性。HYSPLIT 氣流後推軌跡分析顯示近地面(1000hPa)空氣塊來源為中國東北、日韓及菲律賓;中高層(700hPa)受盛行西風主要來自中南半島,少部分來自中國及菲律賓。整年輻射驅動力平均為-45 Wm-2,受沙塵與生質燃燒/城市污染影響平均分別為-105Wm-2 與-66Wm-2。除此之外,
本研究期間發生二十年來影響台灣最大之沙塵事件(2010/3/21-23),其影響範圍遠達南中國海,此期間觀測Angstrom exponent440-870nm 和FMF 分別為0.4-0.9和0.3-0.5,受沙塵暴影響具有粗粒徑顆粒氣膠特徵。本研究雖僅提出一年之觀測資料進行分析,然而,此研究為第一次於南中國海的氣膠光學特性研究,強調其季節變化特性,以及多元氣膠來源(包括人為、生質燃燒和沙塵),可做為區域氣候變遷的先期研究。
Simultaneous measurements of a multi-filter rotating shadowband radiometer (MFRSR) and a Cimel’s sunphotometer (CIMELs) were conducted at Dongsha Island (5 m AMSL; 20.70°N, 116.73°E) in the South China Sea from September 2009 to August 2010. This is the first research to study the aerosol optical properties over the South China Sea, focusing on seasonal variation and source-receptor relationships. The values of AOD500nm and Angstrom exponent were relatively high in spring (March-May), suggesting the influence of fine particles released from biomass burning emissions in the IndoChina Peninsula. Particularly, Monthly mean Angstrom exponent value in February had been for 1.6,
coordinate with the MODIS fire detection data and images showed that a large number of biomass burning events were occurring in the Southeast Asia between February, and may coinciding with the results of our observations.
Results of the single scattering albedo (SSA), Asymmetry Factor, and the fine mode fraction (FMF) analyses showed that fine particles dominated at Dongsha, carrying aerosol properties of biomass burning and urban pollution origins. Backward trajectory analysis indicated that the surface level (1000hPa) air masses were mainly from Northeast China, Japan, Korea and Philippine, On the other hand, due to the influence of prevailing westerlies, the upper level (700hPa) air masses were mainly from the IndoChina Peninsula. A massive dust storm event was observed at Dongsha in 2010/3/21-23. During this dust storm event, the Angstrom exponent440-870nm and FMF were 0.4-0.9 and 0.3-0.5, respectively, indicating the characteristics of coarse dust particles.
林和駿,林博雄及劉紹臣(2005), 台灣南北城市氣膠光學厚度的特徵
中華民國國際氣膠科技研討會,203-212。
林能暉、黃景祥及彭啟明(2001), 空氣品質異常偶發事件之認定及評
估,EPA-90-FA11-03-90D014,行政院環境保護署。
吳承翰(2002), 亞洲沙塵暴之模擬。國立中央大學大氣物理研究所碩
士論文,中壢。
徐睿鴻(2007), 鹿林山與中壢氣膠光學垂直特性之監測與比較。國立
中央大學大氣物理研究所碩士論文,中壢。
郭俊江(2006), 光達及太陽輻射儀之應用:2005 年中壢氣膠光學垂
直特性及邊界層高度之變化。國立中央大學大氣物理研究所碩
士論文,中壢。
賈浩平(2008), 為脈衝光達及太陽輻射儀之應用:2005-2007 年中壢
地區氣膠光學垂直特性分析。國立中央大學大氣物理研究所碩士
論文,中壢。
張廷豪(2009), 多重濾鏡旋轉輻射儀與太陽輻射儀之應用:
2006-2008 年鹿林山氣膠光學特性之探討。國立中央大學大氣 物理研究所碩士論文,中壢。
Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V.
Ramanathan, and E. J. Welton (2000), Reduction of tropical
cloudiness by soot, Science, 288, 1,042-1,047.
Andreae, M. O., C. D. Jones, and P. M. Cox (2005), Strong present-day
aerosol cooling implies a hot future, Nature, 435, 1,187-1,190.
Bates, T. S., et al. (2006), Aerosol direct radiative effects over the
northwest Atlantic, northwest Pacific, and north Indian oceans:
Estimates based on in-situ chemical and optical measurements and
chemical transport modeling, Atmos. Chem. Phys., 6, 1657– 1732.
Chan, L.Y., H. Y. Liu, K. S. Lam, T. Wang, S. J. Oltmans, J. M. Harris
(1998), Analysis of the seasonal behavior of tropospheric ozone at
Hong Kong. Atmos. Environ., 32, 159-168.
Chou, M.D., P.H., Lin, P.L. Ma, and H.J. Lin (2006), Effects of aerosols
on the surface solar radiation in a tropical urban area. J. Gerphys.
Res, 111, D15207, doi:10.1029/2005JD006910.
Chylek, P., and J. Wong (1995), Effect of absorbing aerosols on global
radiation budget, Geophys. Res. Lett., 22, 929-931.
de Leeuw, G., F. Neele, M. Hill, M. Smith, and E. Vignati (2000),
Production of sea-spray aerosol in the surf zone, J. Geophys. Res.,
105, 29,397-29,409.
Du, W.P., J.Y. Xin, M.X. Wang, Q.X. Gao, Z.Q. Li, and Y.S. Wang
(2008), Photometric measurements of spring aerosol optical
properties in dust and non-dust periods in China, Atmos. Environ.,
42, 7,981-7,987.
Dubovik, O., and M. D. King (2000), A flexible inversion algorithm
for retrieval of aerosol optical properties fromSun and sky radiance
measurements, J. Geophys. Res., 105, 20,673–20,696, doi:10.1029/
2000JD900282.
Dubovik, O., B. N. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D.
King, D. Tanre, and I. Slutsker (2002a), Variability of absorption
and optical properties of key aerosol types observed in worldwide
locations, J. Atmos. Sci., 59, 590–608, doi:10.1175/
1520-0469(2002)059<0590:VOAAOP>2.0.CO;2.
Dubovik, O., B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko,
P. Yang, and I. Slutsker (2002b), Non‐spherical aerosol retrieval
method employing light scattering by spheroids, Geophys. Res. Lett.,
29, 1415, doi:10.1029/2001GL014506.
Dubovik, O., et al. (2006), Application of spheroid models to account
for aerosol particle nonsphericity in remote sensing of desert dust, J.
Geophys. Res., 111, D11208, doi:10.1029/2005JD006619.
Eck, T. F., B. N. Holben, O. Dubovik, A. Smirnov, P. Goloub, H. B.
Chen, B. Chatenet, L. Gomes, X.-Y. Zhang, S.-C. Tsay, Q. Ji, D.
Giles,and I. Slutsker (2005), Columnar aerosol optical properties at
AERONET sites in central eastern Asia and aerosol transport to the
tropical mid-Pacific, J. Gerphys. Res., 110, D06202,
doi:10.1029/2004JD005274.
Hansen, J., M. Sato, and R. Ruedy (1997), Radiative forcing and climate
response, J. Geophys. Res., 102, D6, 6,831–6,864.
Hansen, J., T. Bond, B. Cairns, H. Gaeggler, B. Liepert, T. Novakov, and
B. Schichtel (2004), Carbonaceous aerosols in the industrial era,
EOS, Trans. AGU, 85, 241-244.
Harrison, L., J. Michalsky and J. Berndt (1994), Automated multifilter
rotating shadow-band radiometer: an instrument for optical depth
and radiation measurements, Applied Optics, 33, 5,118-5,125.
Haywood, J., D. Roberts, A. Slingo, J. Edwards, and K. Shine (1997),
General circulation model calculations of the direct radiative forcing
of tropospheric sulfate and fossil-fuel aerosol, J. Clim., 10,
1,562-1,577.
Haywood, J. M., O. Boucher (2000), Estimates of the direct and indirect
radiative forcing due to tropospheric aserosol: a review. Reviews of
Geophysics, 38, 513-543.
Intergovernmental Panel on Climate Change (IPCC) (2001), Climate
Change 2007: Technical Summary, edited by F. Joos et al.,
Cambridge Univ. Press, New York.
Jacobson, M. Z. (2000), A physically-based treatment of elemental
carbon optics: Implications for global direct forcing of aerosols,
Geophys. Res. Lett., 27, 217-220.
Jacobson, M. Z. (2004), The short-term cooling but long-term global
warming due to biomass burning, J. Clim., 17, 2,909-2,926.
Kim, J.E., S.Y. Ryu, Z.H. He, and Y.J. Kim (2006), Spectral aerosol
optical depth variation with different types of aerosol at Gwangju,
Korea, Journal of Atmospheric and Solar-Terrestrial Physics,68,
1,609-1,621.
Liao, H. and H. Seinfeld (1998), Effect of clouds on direct aerosol
radiative forcing of climate, J. Geophy. Res., 103, 3,781-3,788.
Mallet, M., et al. (2008), Aerosol direct radiative forcing on Djougou
(Northern Benin) during the AMMA dry season experiment
(SOP_0), J. Geophys. Res., 113, D00C01, doi:10.1029/
2007JD009419.
Monahan, E. C. (1968), Sea spray as a function of low elevation wind
speed, J. Geophys. Res., 73, 1127–1137, doi:10.1029/
JB073i004p01127.
Moorthy, K. K., S. K. Satheesh, and B. V. K. Murthy (1997),
Investigations of marine aerosols over the tropical Indian Ocean, J.
Geophys. Res., 102, 18,827– 18,842.
N. Prats, V.E. Cachorro, M. Sorribas, S. Mogo, A. Berjon, C. Toledano,
A.M. de Frutos, J. de la Rosa, N. Laualinen, B.A. de la Morena
(2008), Columnar aerosol optical properties during ‘‘El Arenosillo
2004 summer campaign’’, Atmos. Environ., 42, 2,643-2,653.
Ogunjobi, K. O., Z. He, K. W. Kim, and Y. J. Kim (2004), Aerosol
optical depth during episodes of Asian dust storms and biomass
burning at Kwangju, South Korea, Atmos. Environ., 38, 1,313-1,323.
Pandithurai, G., R. T. Pinker, O. Dubovik, B. N. Holden, and T. O. Aro
(2001), Remote sensing of aerosol optical characteristics in sub-
Sahel, West Africa, J. Geophys. Res., 106, 28,347–28,356,
doi:10.1029/2001JD900234.
Perez, C., S. Nickovic, J. M. Baldasano, M. Sicard, F. Rocadenbosch, and
V. E. Cachorro, 2006, A long Saharan dust event over the western
Mediterranean:Lidar, Sun photometer observations, and regional
dust modeling, J. Geophys. Res., 111 , D15214,
doi:10.1029/2005JD006579.
Prospero, J. M. (1979), Mineral and sea salt aerosol concentrations in
various ocean regions, J. Geophys. Res., 84, 725– 731.
Radojevic, M., and K. S. Tan (2000), Impacts of biomass burning and
regional haze on the pH of rainwater in Brunei Darussalam.
Atmospheric Environment, 34 , 2,739-2,744.
Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosefeld (2001b),
Aerosol, Climate, and Hydrological Cycle. Since, 294, 2,119-2,124.
Reid, J. S., H. Jonsson, M. Smith, and A. Smirnov (2001), Evolution
of the vertical profile and flux of large sea-salt particles in a coastal
zone. J. Geophys. Res., 106, 12,039-12,053.
Rosenfeld, D. (1999), TRMM observed first direct evidence of smoke
from forest fires inhibiting rainfall, Geophys. Res. Lett., 26,
3,105-3,108.
Russell, P. B., P. V. Hobbs, and L. L. Stowe (1999), Aerosol properties
and radiative effects in the United States east coast haze plume: An
overview of the Tropospheric Aerosol Radiative Forcing
Observational Experiment (TARFOX), J. Geophys. Res., 104,
2,289-2,307.
Smirnov, A., B. N. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck,
I. Slutsker, C. Pietras, and R. N. Halthore (2002), Optical properties
of atmospheric aerosol in maritime environments, J. Atmos. Sci., 59,
501–523, doi:10.1175/1520-0469(2002)059 <0501:OPOAAI>2.0.
CO;2.
Trentmann, J., M. O. Andreae, H. F. Hobbs, R. D. Ottmar, T. Trautnmann
(2002), Simulation of a biomass-burning plume: Comparison of model
results with observations. J. Geophys. Res., 107, AAC 5-1 – 5-15.
Vignati, E., G. de Leeuw, and R. Berkowicz (2001), Modeling coastal
aerosol transport and effects of surf-produced aerosols on processes
in the marine boundary layer, J. Geophys. Res., 106, 20,225-20,238.
Vinoj, V., S. K. Satheesh, and K. K. Moorthy (2010), Optical, radiative,
and source characteristics of aerosols at Minicoy, a remote island in
the southern Arabian Sea, J. Geophys. Res., 115, D01201.
Wang, S. H., N. H. Lin, M. D. Chou, and J. H. Woo (2007), Estimate of
radiative forcing of Asian biomass-burning aerosols during the
period of TRACE-P, J. Geophys. Res., 112 , D10222
doi:10.1029/2006JD007564.
Woodcock, A. H. (1953), Salt nuclei in marine air as a function of
altitude and wind force, J. Atmos. Sci., 10, 366 – 371, doi:10.1175/
1520-0469 (1953)010<0366:SNIMAA>2.0.CO;2.
Yonemura, S.,H. TSURUTA,T. Maeda, S. Kawashima, S. Sudo, M.
Hayashi (2002), Tropospheric ozone variability over Singapore from
August 1996 to December1999. Atmospheric Environment, 36,
2,061-2,070.
Yu, H., R. E. Dickinson, M. Chin, Y. J. Kaufman, M. Zhou, L. Zhou, Y.
Tian, O. Dubovik, and B. N. Holben (2004), Direct radiative effect
of aerosols as determined from a combination of MODIS retrievals
and GOCART simulations, J. Geophys. Res., 109, D03206.