| 研究生: |
黎長灣 Le Truong Vinh |
|---|---|
| 論文名稱: |
Typhoon Behavior and Its Regional Impacts in the Western North Pacific Typhoon Behavior and Its Regional Impacts in the Western North Pacific |
| 指導教授: |
劉說安
Yuei-An Liou |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
地球科學學院 - 國際研究生博士學位學程 Taiwan international graduate program - Earth system science |
| 論文出版年: | 2024 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 颱風 、西北太平洋 、機器學習 、乾旱-颱風關係 、核密度估計 、ENSO 、PDO 、小波相干分析 |
| 外文關鍵詞: | Typhoons,, western North Pacific, ENSO, PDO, drought-typhoon relationship, machine learning, wavelet coherence analysis, kernel density estimation |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱帶氣旋(TCs),通稱颱風,對西北太平洋(WNP)地區的多個國家產生深遠影響。本論文研究了颱風的動力學及其對台灣乾旱的影響,使用了統計技術、小波相干分析、核密度估計和機器學習(ML)模型。在2020-2021年的嚴重乾旱之後,了解颱風特徵與乾旱嚴重程度之間的互動對於改進預測模型和災害緩解策略至關重要。本研究利用了各種數據集,包括颱風最佳路徑記錄、衛星推導的降水數據和氣候指數;進行了統計分析,包括相關矩陣、核密度和小波相干,來探索周期變化和長期趨勢;標準化降水指數(SPI)用於量化乾旱嚴重程度;機器學習模型估算了颱風強度,考慮了如中心氣壓、風暴速度和氣候階段等因素。結果顯示,颱風特徵(如頻率、持續時間、路徑長度和風速)與台灣的乾旱強度之間存在正相關之關係。相比之下,西北太平洋的颱風持續時間和路徑長度與台灣的乾旱指數之間存在負相關,這主要受大規模大氣條件驅動。西北太平洋的颱風活動與台灣的長期乾旱模式相關,尤其是在十年尺度上。按季節劃分,乾旱嚴重程度在冬末和早春達到最高水平,主要集中在台灣的中部和東南部。對1979年至2020年西北太平洋颱風活動的空間分析顯示,颱風活動主要集中在菲律賓和台灣東部,特別是在10°N和25°N緯度之間;季節性高峰出現在7月和8月,ENSO和PDO階段影響颱風的形成和分布。這些結果深化了對颱風模式的理解,幫助改進預測模型和災害準備工作;評估了八個機器學習模型來預測颱風強度,其中Cubist和RF模型表現最佳;中心氣壓顯示為最具影響力的預測因子,而在暖ENSO階段的預測誤差最高。這一綜合分析提升了對西北太平洋颱風動力學的理解,提供了改進預測模型和災害準備的堅實框架,最終有助於氣候韌性和風險管理政策的制定。
Tropical cyclones (TCs), commonly referred to as typhoons, have a profound effect on several countries in the western North Pacific (WNP). This dissertation investigates the dynamics of typhoons and their impact on droughts in Taiwan, using statistical techniques, wavelet coherence analysis, kernel density estimation, and machine learning (ML) models. Following the severe drought of 2020-2021, understanding the interaction between typhoon characteristics and drought severity is crucial for improving predictive models and disaster mitigation strategies. This research makes use of various datasets, including TC best-track records, satellite-derived precipitation data, and climate indices. Statistical analyses, including correlation matrices, kernel density, and wavelet coherence, were conducted to explore periodic variations and long-term tendencies. The Standardized Precipitation Index (SPI) quantified drought severity. ML models estimated TC intensity, incorporating factors like central pressure, storm speed, and climatic phases. The findings revealed a positive relationship between typhoon features (such as frequency, duration, path length, and wind speed) and drought intensity in Taiwan. In contrast, negative correlations were noted between typhoon duration and path length in the WNP and drought indices in Taiwan, driven by large-scale atmospheric conditions. Typhoon activity in the WNP was linked to long-term drought patterns in Taiwan, especially over decadal timescales. On a seasonal basis, drought severity reached its highest levels in central and southeastern Taiwan during late winter and early spring. The spatial analysis of TC activity in the WNP from 1979 to 2020 highlights concentrated typhoon activity east of the Philippines and Taiwan, particularly between 10°N and 25°N latitude. Seasonal peaks occur in July and August, with ENSO and PDO phases influencing typhoon formation and distribution. These results deepen the understanding of typhoon patterns and aid in refining forecasting models and disaster readiness in the WNP area. Eight ML models were evaluated for predicting TC intensity, with Cubist and RF models performing best. Central pressure emerged as the most influential predictor, with highest prediction errors during warm ENSO phases. This comprehensive analysis enhances understanding of typhoon dynamics in the WNP, providing a robust framework for improving predictive models and disaster preparedness, ultimately informing climate resilience and risk management policies.
1. IPCC. (2021). Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou, Eds.). Cambridge University Press.
2. Javadinejad, S., Ostad-Ali-Askari, K., & Eslamian, S. (2019). Application of multi-index decision analysis to management scenarios considering climate change prediction in the Zayandeh Rud River Basin. Water Conservation Science and Engineering, 4, 53-70.
3. Mamalakis, A., Randerson, J. T., Yu, J. Y., Pritchard, M. S., Magnusdottir, G., Smyth, P., & Foufoula-Georgiou, E. (2021). Zonally contrasting shifts of the tropical rain belt in response to climate change. Nature climate change, 11(2), 143-151.
4. Liu, J. C., Liou, Y. A., Wu, M. X., Lee, Y. J., Cheng, C. H., Kuei, C. P., & Hong, R. M. (2014). Analysis of interactions among two tropical depressions and TYPs Tembin and Bolaven (2012) in Pacific Ocean by using satellite cloud images. IEEE Transactions on Geoscience and Remote Sensing, 53(3), 1394-1402.
5. Liou, Y. A., Liu, J. C., Wu, M. X., Lee, Y. J., Cheng, C. H., Kuei, C. P., & Hong, R. M. (2016). Generalized empirical formulas of threshold distance to characterize cyclone–cyclone interactions. IEEE Transactions on Geoscience and Remote Sensing, 54(6), 3502-3512.
6. Liou, Y. A., Liu, J. C., Liu, C. P., & Liu, C. C. (2018). Season-dependent distributions and profiles of seven super-TYPs (2014) in the Northwestern Pacific Ocean from satellite cloud images. IEEE Transactions on Geoscience and Remote Sensing, 56(5), 2949-2957.
7. Liou, Y.-A., Pandey, R.S. (2020). Interactions between TYPs Parma and Melor (2009) in North West Pacific Ocean. Weather and Climate Extremes. 29, 100272.
8. Webster, P. J., Holland, G. J., Curry, J. A., & Chang, H. R. (2005). Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309(5742), 1844-1846.
9. Emanuel, K. (2018). 100 years of progress in tropical cyclone research. Meteorological Monographs, 59, 15-1.
10. Haghroosta, T., & Ismail, W. R. (2017). TYP activity and some important parameters in the South China Sea. Weather and Climate Extremes, 17, 29-35.
11. Michener, W. K., Blood, E. R., Bildstein, K. L., Brinson, M. M., & Gardner, L. R. (1997). Climate change, hurricanes and tropical storms, and rising sea level in coastal wetlands. Ecological applications, 7(3), 770-801.
12. Knutson, T. R., McBride, J. L., Chan, J., Emanuel, K., Holland, G., Landsea, C., & Sugi, M. (2010). Tropical cyclones and climate change. Nature geoscience, 3(3), 157-163.
13. Mori, N., Takemi, T., Tachikawa, Y., Tatano, H., Shimura, T., Tanaka, T., ... & Nakakita, E. (2021). Recent nationwide climate change impact assessments of natural hazards in Japan and East Asia. Weather and Climate Extremes, 32, 100309.
14. Jewson, S. (2023). Tropical Cyclones and Climate Change: Global Landfall Frequency Projections Derived from Knutson et al. Bulletin of the American Meteorological Society, 104(5), E1085-E1104.
15. Magee, A. D., Kiem, A. S., & Chan, J. C. (2021). A new approach for location-specific seasonal outlooks of TYP and super TYP frequency across the Western North Pacific region. Scientific reports, 11(1), 19439.
16. Ng, K. S., & Leckebusch, G. C. (2021). A new view on the risk of TYP occurrence in the western North Pacific. Natural Hazards and Earth System Sciences, 21(2), 663-682.
17. Chang, C. T., Vadeboncoeur, M. A., Lin, T. C. (2018). Resistance and resilience of social–ecological systems to recurrent TYP disturbance on a subtropical island: Taiwan. Ecosphere, 9(1), e02071.
18. Wang, R., Wu, L., & Wang, C. (2011). TYP track changes associated with global warming. Journal of Climate, 24(14), 3748-3752.
19. Ditchek, S.D., Sippel, J.A., Marinescu, P.J., Alaka Jr, G.J., 2023. Improving best track verification of tropical cyclones: A new metric to identify forecast consistency. Weather and Forecasting. 38, 817-831.
20. Chang, H., & Bonnette, M. R. (2016). Climate change and water‐related ecosystem services: impacts of drought in California, USA. Ecosystem Health and Sustainability, 2(12), e01254.
21. Wu, C. C., & Ming-Jen, Y. (2011). Preface to the Special Issue on" TYP Morakot (2009): Observation, Modeling, and Forecasting". TAO: Terrestrial, Atmospheric and Oceanic Sciences, 22(6), I.
22. NCDR, 2018. Characteristics of drought disaster in Taiwan [WWW Document]. URL https://dra.ncdr.nat.gov.tw/Frontend/Disaster/RiskDetail/BAL0000022. (Accessed 05.15.21).
23. Hale, Erin (2021). Taiwan faces water wake-up call as climate change intensifies, 20 August. Available at https://www.aljazeera.com/news/2021/8/20/taiwan-water-woes
24. Ortegren, J. T., & Maxwell, J. T. (2014). Spatiotemporal Patterns of Drought/Tropical Cyclone Co‐occurrence in the Southeastern USA: Linkages to North Atlantic Climate Variability. Geography Compass, 8(8), 540-559.
25. Misra, V., & Bastola, S. (2016). Reconciling droughts and landfalling tropical cyclones in the Southeastern United States. Climate Dynamics, 46(3), 1277-1286.
26. Maxwell, J.T., Soulé, P.T., Ortegren, J.T., Knapp, P.A. (2012). Drought-busting tropical cyclones in the southeastern Atlantic United States: 1950–2008. Annals of the Association of American Geographers. 102, 259-275.
27. Maxwell, J.T., Ortegren, J.T., Knapp, P.A., Soulé, P.T. (2013). Tropical cyclones and drought amelioration in the Gulf and southeastern coastal United States. Journal of Climate. 26, 8440-8452.
28. Kam, J., Sheffield, J., Yuan, X., Wood, E.F., 2013. The influence of Atlantic tropical cyclones on drought over the eastern United States (1980–2007). Journal of Climate. 26, 3067-3086.
29. Choi, J.-W., Cha, Y., Kim, J.-Y. (2016). Reverse relationship between drought of mid-latitudes in East Asia and Northwest Pacific tropical cyclone genesis frequency in summer. Geoscience Letters. 3, 1-9.
30. Jing, Y., Li, J., Weng, Y., Wang, J., 2014. The assessment of drought relief by TYP Saomai based on MODIS remote sensing data in Shanghai, China. Natural hazards. 71, 1215-1225.
31. Yoo, J., Kwon, H.H., So, B.J., Rajagopalan, B., Kim, T.W., 2015. Identifying the role of TYPs as drought busters in South Korea based on hidden Markov chain models. Geophysical Research Letters. 42, 2797-2804.
32. Song, J., Abbaszadeh, P., Deb, P., Moradkhani, H., 2022. Unraveling the relationship between tropical storms and agricultural drought. Earth's Future. 10, e2021EF002417.
33. Dvorak, V. F. (1975). Tropical cyclone intensity analysis and forecasting from satellite imagery. Monthly Weather Review, 103(5), 420-430.
34. Dvorak, V. F. (1984). Tropical cyclone intensity analysis using satellite data (Vol. 11). US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service.
35. Velden, C., Harper, B., Wells, F., Beven, J. L., Zehr, R., Olander, T., & McCrone, P. (2006). The Dvorak tropical cyclone intensity estimation technique: A satellite-based method that has endured for over 30 years. Bulletin of the American Meteorological Society, 87(9), 1195-1210.
36. Olander, T. L., & Velden, C. S. (2019). The advanced Dvorak technique (ADT) for estimating tropical cyclone intensity: Update and new capabilities. Weather and Forecasting, 34(4), 905-922.
37. Kar, C., & Banerjee, S. (2018). An image processing approach for intensity detection of tropical cyclone using feature vector analysis. International journal of image and data fusion, 9(4), 338-348.
38. Emanuel, K., DesAutels, C., Holloway, C., & Korty, R. (2004). Environmental control of tropical cyclone intensity. Journal of the atmospheric sciences, 61(7), 843-858.
39. Lee, C. Y., Tippett, M. K., Camargo, S. J., & Sobel, A. H. (2015). Probabilistic multiple linear regression modeling for tropical cyclone intensity. Monthly Weather Review, 143(3), 933-954.
40. Bhattacharya, S. K., Kotal, S. D., Nath, S., Bhowmik, S. K. R., & Kundu, P. K. (2018). Tropical cyclone intensity prediction over the North Indian Ocean-An NWP based objective approach. Geofizika, 35(2), 189-278.
41. Davis, C. A. (2018). Resolving tropical cyclone intensity in models. Geophysical Research Letters, 45(4), 2082-2087.
42. Griffin, J. S., Burpee, R. W., Marks, F. D., & Franklin, J. L. (1992). Real-time airborne analysis of aircraft data supporting operational hurricane forecasting. Weather and forecasting, 7(3), 480-490.
43. Lee, R. S., & Lin, J. N. K. (2001). An elastic contour matching model for tropical cyclone pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 31(3), 413-417.
44. Chen, R., Zhang, W., & Wang, X. (2020). Machine learning in tropical cyclone forecast modeling: A review. Atmosphere, 11(7), 676.
45. Biswas, K., Kumar, S., & Pandey, A. K. (2021). Tropical cyclone intensity estimations over the Indian ocean using machine learning. arXiv preprint arXiv:2107.05573.
46. Olander, T., Wimmers, A., Velden, C., & Kossin, J. P. (2021). Investigation of machine learning using satellite-based advanced Dvorak technique analysis parameters to estimate tropical cyclone intensity. Weather and Forecasting, 36(6), 2161-2186.
47. Zhang, C. J., Luo, Q., Dai, L. J., Ma, L. M., & Lu, X. Q. (2019). Intensity estimation of tropical cyclones using the relevance vector machine from infrared satellite image data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(3), 763-773.
48. Tan, J., Yang, Q., Hu, J., Huang, Q., & Chen, S. (2022). Tropical cyclone intensity estimation using Himawari-8 satellite cloud products and deep learning. Remote Sensing, 14(4), 812.
49. Jiang, W., Hu, G., Wu, T., Liu, L., Kim, B., Xiao, Y., & Duan, Z. (2023). DMANet_KF: tropical cyclone intensity estimation based on deep learning and Kalman filter from multi-spectral infrared images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.
50. Knapp, K.R., Kruk, M.C., Levinson, D.H., Diamond, H.J., Neumann, C.J. (2010). The international best track archive for climate stewardship (IBTrACS) unifying tropical cyclone data. Bulletin of the American Meteorological Society. 91, 363-376.
51. Knapp, K. R., H. J. Diamond, J. P. Kossin, M. C. Kruk, C. J. Schreck, 2018: International Best Track Archive for Climate Stewardship (IBTrACS) Project, Version 4. NOAA National Centers for Environmental Information. doi:10.25921/82ty-9e16
52. Katsanos, D., Retalis, A., & Michaelides, S. (2016). Validation of a high-resolution precipitation database (CHIRPS) over Cyprus for a 30-year period. Atmospheric Research, 169, 459-464.
53. Rivera, J.A., Marianetti, G., Hinrichs, S. (2018). Validation of CHIRPS precipitation dataset along the Central Andes of Argentina. Atmospheric Research. 213, 437-449.
54. Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific data. 2, 1-21.
55. Liou, Y. A., & Mulualem, G. M. (2019). Spatio–temporal assessment of drought in Ethiopia and the impact of recent intense droughts. Remote sensing, 11(15), 1828.
56. Prakash, S. (2019). Performance assessment of CHIRPS, MSWEP, SM2RAIN-CCI, and TMPA precipitation products across India. Journal of Hydrology, 571, 50-59.
57. Torres-Batlló, J., & Martí-Cardona, B. (2020). Precipitation trends over the southern Andean Altiplano from 1981 to 2018. Journal of Hydrology, 590, 125485.
58. Wu, C. C., Yen, T. H., Huang, Y. H., Yu, C. K., & Chen, S. G. (2016). Statistical characteristic of heavy rainfall associated with TYPs near Taiwan based on high-density automatic rain gauge data. Bulletin of the American Meteorological Society, 97(8), 1363-1375.
59. Hsu, J., Huang, W. R., Liu, P. Y., & Li, X. (2021). Validation of CHIRPS precipitation estimates over Taiwan at multiple timescales. Remote Sensing, 13(2), 254.
60. Wolter, K. & Timlin, M. S. (1993). Monitoring ENSO in COADS with a seasonally adjusted principal component index. In Proc. of the 17th Climate Diagnostics Workshop, 1993.
61. Wolter, K., & Timlin, M. S. (1998). Measuring the strength of ENSO events: How does 1997/98 rank?. Weather, 53(9), 315-324.
62. Zhang, T., Hoell, A., Perlwitz, J., Eischeid, J., Murray, D., Hoerling, M., & Hamill, T. M. (2019). Towards probabilistic multivariate ENSO monitoring. Geophysical Research Letters, 46(17-18), 10532-10540.
63. Zhang, Y., Wallace, J. M., & Battisti, D. S. (1997). ENSO-like interdecadal variability: 1900–93. Journal of climate, 10(5), 1004-1020.
64. Mantua, N. J. (1999). The Pacific Decadal Oscillation. A brief overview for non–specialists, to appear in the Encyclopedia of Environmental Change. Joint Institute for the Study of the Atmosphere and Oceans University of Washington, Seattle, Washington, USA.(http://jisao. washington. edu/pdo/).
65. McKee, T.B., Doesken, N.J., Kleist, J., The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology, California (1993), pp. 179-183.
66. McKee, T.B., Drought monitoring with multiple time scales. Proceedings of 9th Conference on Applied Climatology, Boston, 1995 (1995).
67. Edwards, D. C., & McKee, T. B. (1997). Characteristics of 20th century drought in the United States at multiple time scales.
68. Lloyd-Hughes, B., & Saunders, M. A. (2002). A drought climatology for Europe. International journal of climatology, 22(13), 1571-1592.
69. Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of hydrology, 391(1-2), 202-216.
70. Liang, A., Oey, L., Huang, S., & Chou, S. (2017). Long‐term trends of TYP‐induced rainfall over Taiwan: In situ evidence of poleward shift of TYPs in western North Pacific in recent decades. Journal of Geophysical Research: Atmospheres, 122(5), 2750-2765.
71. Hung, C. W. (2013). A 300-year TYP record in Taiwan and the relationship with solar activity. Terr. Atmos. Ocean. Sci., 24, 737-743, doi.
72. Nogueira, R. C., & Keim, B. D. (2010). Annual volume and area variations in tropical cyclone rainfall over the eastern United States. Journal of climate, 23(16), 4363-4374.
73. Chen, A., Ho, C. H., Chen, D., & Azorin-Molina, C. (2019). Tropical cyclone rainfall in the Mekong River Basin for 1983–2016. Atmospheric Research, 226, 66-75.
74. Chang, C. P., Yang, Y. T., & Kuo, H. C. (2013). Large increasing trend of tropical cyclone rainfall in Taiwan and the roles of terrain. Journal of Climate, 26(12), 4138-4147.
75. Vincenty, T. (1975). Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Survey review, 23(176), 88-93.
76. West, H., Quinn, N., & Horswell, M. (2019). Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities. Remote Sensing of Environment, 232, 111291.
77. Kirch, W. (2008). Pearson’s correlation coefficient. Encyclopedia of public health. 1, 1090-1091.
78. Kendall, M.G. (1938). A new measure of rank correlation. Biometrika. 30, 81-93.
79. Sen, P.K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American statistical association. 63, 1379-1389.
80. Chu, P. S., Chen, D. J., & Lin, P. L. (2014). Trends in precipitation extremes during the TYP season in Taiwan over the last 60 years. Atmospheric Science Letters, 15(1), 37-43.
81. Zhang, X., Obringer, R., Wei, C., Chen, N., Niyogi, D. (2017). Droughts in India from 1981 to 2013 and implications to wheat production. Scientific reports, 7(1), 44552.
82. Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear processes in geophysics, 11(5/6), 561-566.
83. Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological society, 79(1), 61-78.
84. Rumpf, J., Weindl, H., Höppe, P., Rauch, E., & Schmidt, V. (2007). Stochastic modelling of tropical cyclone tracks. Mathematical Methods of Operations Research, 66, 475-490.
85. Chu, H. J., Liau, C. J., Lin, C. H., & Su, B. S. (2012). Integration of fuzzy cluster analysis and kernel density estimation for tracking TYP trajectories in the Taiwan region. Expert Systems with Applications, 39(10), 9451-9457.
86. Wahiduzzaman, M., Oliver, E. C., Wotherspoon, S. J., & Holbrook, N. J. (2017). A climatological model of North Indian Ocean tropical cyclone genesis, tracks and landfall. Climate Dynamics, 49, 2585-2603.
87. Wang, X., Wahiduzzaman, M., & Yeasmin, A. (2022). A Kernel Density Estimation Approach and Statistical Generalized Additive Model of Western North Pacific TYP Activities. Atmosphere, 13(7), 1128.
88. Sinnott, R. W. (1984). Virtues of the Haversine. Sky and telescope, 68(2), 158.
89. Myers, R. H., & Montgomery, D. C. (1997). A tutorial on generalized linear models. Journal of Quality Technology, 29(3), 274-291.
90. Zhao, Y., Staudenmayer, J., Coull, B. A., & Wand, M. P. (2006). General design Bayesian generalized linear mixed models. Statistical science, 35-51.
91. Peterson, L. E. (2009). K-nearest neighbor. Scholarpedia, 4(2), 1883.
92. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20, 273-297.
93. Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
94. Sutton, C. D. (2005). Classification and regression trees, bagging, and boosting. Handbook of statistics, 24, 303-329.
95. Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232.
96. Friedman, J. H. (2002). Stochastic gradient boosting. Computational statistics & data analysis, 38(4), 367-378.
97. Quinlan, J.R. Learning with continuous classes. In Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, Hobart, Australia, 16–18 November 1992.
98. Chou, C., Tu, J.-Y., Chu, P.-S. (2010). Possible impacts of global warming on TYP activity in the vicinity of Taiwan. Climate change and variability. 79, 96.
99. Wang, B., Liu, J., Kim, H. J., Webster, P. J., Yim, S. Y., & Xiang, B. (2013). Northern Hemisphere summer monsoon intensified by mega-El Niño/southern oscillation and Atlantic multidecadal oscillation. Proceedings of the National Academy of Sciences, 110(14), 5347-5352.
100. Kuo, H. C., Chang, C. P., Yang, Y. T., Chen, Y. H., Su, S. H., & Lin, L. Y. (2017). Large increasing trend of tropical cyclone rainfall in Taiwan and the roles of terrain and southwest monsoon. In The global monsoon system: research and forecast (pp. 255-265).
101. Tu, J. Y., Chou, C., & Chu, P. S. (2009). The abrupt shift of TYP activity in the vicinity of Taiwan and its association with western North Pacific–East Asian climate change. Journal of Climate, 22(13), 3617-3628.
102. Chu, P. S., Chen, Y. R., & Schroeder, T. A. (2010). Changes in precipitation extremes in the Hawaiian Islands in a warming climate. Journal of Climate, 23(18), 4881-4900.
103. Chen, S. T., Kuo, C. C., & Yu, P. S. (2009). Historical trends and variability of meteorological droughts in Taiwan/Tendances historiques et variabilité des sécheresses météorologiques à Taiwan. Hydrological sciences journal, 54(3), 430-441.
104. Yu, P. S., Yang, T. C., & Kuo, C. C. (2006). Evaluating long-term trends in annual and seasonal precipitation in Taiwan. Water Resources Management, 20, 1007-1023.
105. Hsu, P. C., Ho, C. R., Liang, S. J., & Kuo, N. J. (2013). Impacts of two types of El Niño and La Niña events on TYP activity. Advances in Meteorology, 2013.
106. Jang, S. R., & Ha, K. J. (2008). On the relationship between TYP intensity and formation region: effect of developing and decaying ENSO. Journal of the Korean earth science society, 29(1), 29-44.
107. Knaff, J. A., & Zehr, R. M. (2007). Reexamination of tropical cyclone wind–pressure relationships. Weather and Forecasting, 22(1), 71-88.
108. Wang, C., Zheng, G., Li, X., Xu, Q., Liu, B., & Zhang, J. (2021). Tropical cyclone intensity estimation from geostationary satellite imagery using deep convolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-16.
109. Chen, B. F., Chen, B., Lin, H. T., & Elsberry, R. L. (2019). Estimating tropical cyclone intensity by satellite imagery utilizing convolutional neural networks. Weather and Forecasting, 34(2), 447-465.
110. Tian, W., Lai, L., Niu, X., Zhou, X., Zhang, Y., & Lim Kam Sian, K. T. C. (2023). Estimating tropical cyclone intensity using dynamic balance convolutional neural network from satellite imagery. Journal of Applied Remote Sensing, 17(2), 024513-024513.
111. Zhong, W., Zhang, D., Sun, Y., & Wang, Q. (2023). A CatBoost-Based Model for the Intensity Detection of Tropical Cyclones over the Western North Pacific Based on Satellite Cloud Images. Remote Sensing, 15(14), 3510.
112. Zhang, R., Liu, Y., Yue, L., Liu, Q., & Hang, R. (2024). Estimating tropical cyclone intensity using a STIA model from Himawari-8 satellite images in the western North Pacific basin. IEEE Transactions on Geoscience and Remote Sensing.
113. Xiang, K., Yang, X., Zhang, M., Li, Z., & Kong, F. (2019). Objective estimation of tropical cyclone intensity from active and passive microwave remote sensing observations in the Northwestern Pacific Ocean. Remote Sensing, 11(6), 627.
114. Sakuragi, T., Hoshino, S., & Kitabatake, N. (2014). Development and verification of a tropical cyclone intensity estimation method reflecting the variety of TRMM/TMI brightness temperature distribution. RSMC Tokyo-TYP Center Tech. Rev, (16), 15.
115. Ritchie, E. A., Wood, K. M., Rodríguez-Herrera, O. G., Piñeros, M. F., & Tyo, J. S. (2014). Satellite-derived tropical cyclone intensity in the North Pacific Ocean using the deviation-angle variance technique. Weather and forecasting, 29(3), 505-516.
116. Lu, X., & Yu, H. (2013). An objective tropical cyclone intensity estimation model based on digital IR satellite images. Tropical Cyclone Research and Review, 2(4), 233-241.
117. Zhao, Y., Zhao, C., Sun, R., & Wang, Z. (2016). A multiple linear regression model for tropical cyclone intensity estimation from satellite infrared images. Atmosphere, 7(3), 40.
118. Ryu, S., Hong, S. E., Park, J. D., & Hong, S. (2020). An Improved Conversion Relationship between Tropical Cyclone Intensity Index and Maximum Wind Speed for the Advanced Dvorak Technique in the Northwestern Pacific Ocean Using SMAP Data. Remote Sensing, 12(16), 2580.
119. Le, T. V., Liou, Y. A., & Nguyen, K. A. (2024). Revealing the intricate relationship: Droughts and TYPs in Taiwan using the Standardized Precipitation Index (SPI). Journal of Hydrology: Regional Studies, 55, 101917.
120. Liou, Y. A., & Le, T. V. (2024). Comparative Analysis of Machine Learning Models for Tropical Cyclone Intensity Estimation. Remote Sensing, 16(17), 3138.