跳到主要內容

簡易檢索 / 詳目顯示

研究生: 湯惟策
Wei-tse Tan
論文名稱:
An Inexact Newton Method for Drift-DiffusionModel in Semiconductor Device Simulations
指導教授: 黃楓南
Feng-Nan Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 97
語文別: 英文
論文頁數: 44
中文關鍵詞: semiconductorGMRESfinite differencedrift-diffusionNewton''s method
外文關鍵詞: drift-diffusion, Newton''s method, finite difference, GMRES, semiconductor
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文針對半導體儀器作數值模擬,運用 inexact Newton''s method 對 drift-diffusion model 求解。考慮原型的 drift-diffusion model 包含:電子電壓,電子濃度,電洞濃度等三個未知變數。數值實驗使用 drift-diffusion model 模擬一個一維的二極體幾何模型。我們討論兩個不同的 non-dimensionalization approach 對 Newton''s method 的影響並分析 GMRES method 使用不同的 preconditioner 在 Newton''s method 的結果。實驗結果顯示使用不同的 non-dimensionalization approach 將影響 Newton''s method 的收斂情形。在實驗中我們使用 US non-dimensional approach (Uniform Scaling non-dimensional approach) 有效的提供 Newton''s method 一個良好的環境。根據實驗結果發現增加 block Jacobi preconditioner 中 block 的數量幾乎不影響 Newton''s method 的迭代次數,更甚者即便是增加網格點的數目 Newton''s method 的迭代次數依然不受影響。


    The aim of this thesis to employ an inexact Newton''s method to solve discrete drift-diffusion model in semiconductor device simulations, where the drift-diffusion model in the primitive form consists of the electrostatic potential , the electron concentrations and the hole concentrations. Consider a 1D diode simulations modeled by drift-diffusion as a test case. We discuss the effect on Newton''s method by two non-dimensionalization approaches and the application of GMRES method without/ with diagonal and block Jacobi. It is true that the non-dimensional approach will affect the converge of Newton''s method. In our case, we choose US non-dimensional approach (Uniform Scaling non-dimensional approach) and it will make a great environment for Newton''s method. From numerical experiment, we find that increasing number of blocks for a block Jacobi preconditioner almost doesn''t affect the number of Newton''s iterations and decreasing grid size for a block Jacobi preconditioner also doesn''t affect the Newton''s iterations neither.

    Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 The drift-diffusion model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1 The drift-diffusion model in semiconductor devices . . . . . . . . . . . . 2 2.2 Two Non-dimensionalization approaches . . . . . . . . . . . . . . . . . . 3 3 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1 Finite difference method . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.2 The inexact Newton method with backtracking for semiconductor algorithm 8 4 Numerical result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.1 The drift-diffusion model for the n 􀀀 n+ diode simulations . . . . . . . . 10 4.2 Case 1: A low potential case for 1D n 􀀀 n+ diode simulation . . . . . . 11 4.3 Case 2: A common case for n 􀀀 n+ diode simulation in 1D . . . . . . . 15 4.4 Newton’s method with GMRES for Case 2 . . . . . . . . . . . . . . . . 24 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Appendix: Maxwell’s equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Appendix: Poisson’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Appendix: Continuity equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Appendix: Carrier transport equations . . . . . . . . . . . . . . . . . . . . . . . . 31

    [1] S. Aˇsmontas, J. Gradauskas, A. Suˇzied˙elis, and G. Valuˇsis. Submicron semiconductor
    structure for microwave detection. Microelectronic Engineering, 53(1-4):553–
    556, 2000.
    [2] J.F. Burgler, W.M. Coughran Jr, and W. Fichtner. An adaptive grid refinement strategy
    for the drift-diffusionequations. IEEE Transactions on Computer-Aided Design
    of Integrated Circuits and Systems, 10(10):1251–1258, 1991.
    [3] R.C. Chen and J.L. Liu. An iterative method for adaptive finite element solutions
    of an energy transport model of semiconductor devices. Journal of Computational
    Physics, 189(2):579–606, 2003.
    [4] R.C. Chen and J.L. Liu. Monotone iterative methods for the adaptive finite element
    solution of semiconductor equations. Journal of Computational and Applied
    Mathematics, 159(2):341–364, 2003.
    [5] R.C. Chen and J.L. Liu. A quantum corrected energy-transport model for nanoscale
    semiconductor devices. Journal of Computational Physics, 204(1):131–156, 2005.
    [6] R.C. Chen and J.L. Liu. An accelerated monotone iterative method for the
    quantum-corrected energy transport model. Journal of Computational Physics,
    227(12):6226–6240, 2008.
    [7] R.S. Dembo, S.C. Eisenstat, and T. Steihaug. Inexact newton methods. SIAM Journal
    on Numerical Analysis, 19:400–408, 1982.
    [8] S.C. Eisenstat, H.F. Walker, S.C. Eisenstatt, and F. Walker. Choosing the forcing
    terms in an inexact Newton method. SIAM J. Sci. Comput, 1996.
    [9] H. K. GUMMEL. A Self -Consistent Iterative Scheme for One-Dimensional Steady
    State Transistor Calculations. IEEE Trans, ED-11(2):455–465, 1964.
    [10] M. Hansen. Maxwells Equations. 2004.
    [11] L. Hsiao and S. Wang. Quasineutral limit of a time-dependent drift–diffusion–
    Poisson model for pn junction semiconductor devices. Journal of Differential Equations,
    225(2):411–439, 2006.
    [12] Joseph W. Jerome. Semiconductor models: Their mathematical study and approximation,
    1992.
    [13] J.W. Jerome. Consistency of semiconductor modeling: an existence/stability analysis
    for the stationary van Roosbroeck system. SIAM Journal on Applied Mathematics,
    45:565–590, 1985.
    [14] P.A. Markowich, C.A.

    QR CODE
    :::