| 研究生: |
湯惟策 Wei-tse Tan |
|---|---|
| 論文名稱: |
An Inexact Newton Method for Drift-DiffusionModel in Semiconductor Device Simulations |
| 指導教授: |
黃楓南
Feng-Nan Hwang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 44 |
| 中文關鍵詞: | semiconductor 、GMRES 、finite difference 、drift-diffusion 、Newton''s method |
| 外文關鍵詞: | drift-diffusion, Newton''s method, finite difference, GMRES, semiconductor |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文針對半導體儀器作數值模擬,運用 inexact Newton''s method 對 drift-diffusion model 求解。考慮原型的 drift-diffusion model 包含:電子電壓,電子濃度,電洞濃度等三個未知變數。數值實驗使用 drift-diffusion model 模擬一個一維的二極體幾何模型。我們討論兩個不同的 non-dimensionalization approach 對 Newton''s method 的影響並分析 GMRES method 使用不同的 preconditioner 在 Newton''s method 的結果。實驗結果顯示使用不同的 non-dimensionalization approach 將影響 Newton''s method 的收斂情形。在實驗中我們使用 US non-dimensional approach (Uniform Scaling non-dimensional approach) 有效的提供 Newton''s method 一個良好的環境。根據實驗結果發現增加 block Jacobi preconditioner 中 block 的數量幾乎不影響 Newton''s method 的迭代次數,更甚者即便是增加網格點的數目 Newton''s method 的迭代次數依然不受影響。
The aim of this thesis to employ an inexact Newton''s method to solve discrete drift-diffusion model in semiconductor device simulations, where the drift-diffusion model in the primitive form consists of the electrostatic potential , the electron concentrations and the hole concentrations. Consider a 1D diode simulations modeled by drift-diffusion as a test case. We discuss the effect on Newton''s method by two non-dimensionalization approaches and the application of GMRES method without/ with diagonal and block Jacobi. It is true that the non-dimensional approach will affect the converge of Newton''s method. In our case, we choose US non-dimensional approach (Uniform Scaling non-dimensional approach) and it will make a great environment for Newton''s method. From numerical experiment, we find that increasing number of blocks for a block Jacobi preconditioner almost doesn''t affect the number of Newton''s iterations and decreasing grid size for a block Jacobi preconditioner also doesn''t affect the Newton''s iterations neither.
[1] S. Aˇsmontas, J. Gradauskas, A. Suˇzied˙elis, and G. Valuˇsis. Submicron semiconductor
structure for microwave detection. Microelectronic Engineering, 53(1-4):553–
556, 2000.
[2] J.F. Burgler, W.M. Coughran Jr, and W. Fichtner. An adaptive grid refinement strategy
for the drift-diffusionequations. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 10(10):1251–1258, 1991.
[3] R.C. Chen and J.L. Liu. An iterative method for adaptive finite element solutions
of an energy transport model of semiconductor devices. Journal of Computational
Physics, 189(2):579–606, 2003.
[4] R.C. Chen and J.L. Liu. Monotone iterative methods for the adaptive finite element
solution of semiconductor equations. Journal of Computational and Applied
Mathematics, 159(2):341–364, 2003.
[5] R.C. Chen and J.L. Liu. A quantum corrected energy-transport model for nanoscale
semiconductor devices. Journal of Computational Physics, 204(1):131–156, 2005.
[6] R.C. Chen and J.L. Liu. An accelerated monotone iterative method for the
quantum-corrected energy transport model. Journal of Computational Physics,
227(12):6226–6240, 2008.
[7] R.S. Dembo, S.C. Eisenstat, and T. Steihaug. Inexact newton methods. SIAM Journal
on Numerical Analysis, 19:400–408, 1982.
[8] S.C. Eisenstat, H.F. Walker, S.C. Eisenstatt, and F. Walker. Choosing the forcing
terms in an inexact Newton method. SIAM J. Sci. Comput, 1996.
[9] H. K. GUMMEL. A Self -Consistent Iterative Scheme for One-Dimensional Steady
State Transistor Calculations. IEEE Trans, ED-11(2):455–465, 1964.
[10] M. Hansen. Maxwells Equations. 2004.
[11] L. Hsiao and S. Wang. Quasineutral limit of a time-dependent drift–diffusion–
Poisson model for pn junction semiconductor devices. Journal of Differential Equations,
225(2):411–439, 2006.
[12] Joseph W. Jerome. Semiconductor models: Their mathematical study and approximation,
1992.
[13] J.W. Jerome. Consistency of semiconductor modeling: an existence/stability analysis
for the stationary van Roosbroeck system. SIAM Journal on Applied Mathematics,
45:565–590, 1985.
[14] P.A. Markowich, C.A.