| 研究生: |
吳盛明 Sheng-Ming Wu |
|---|---|
| 論文名稱: |
區域型Takagi-Sugeno模糊系統之 H2/H∞ 區域控制器設計 H2/H∞ Regional Controller Design for Takagi-Sugeno Fuzzy Region Systems |
| 指導教授: |
鍾鴻源
Hung-Yuan Chung |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | Takagi-Sugeno 模糊系統,模糊區域觀念,線性矩陣不等式,Lyapunov 穩定準則 |
| 外文關鍵詞: | Takagi-Sugeno fuzzy systems, fuzzy region concept, Linear Matrix Inequality (LMI) and Lyapunov stab |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Takagi-Sugeno (T-S) 模糊控制器設計方法多採用平行分配補償 (Parallel Distributed Compensation - PDC) 之設計觀念並結合里阿伯諾 (Lyapunov) 穩定法則來做T-S模糊模型的設計及分析。求解 T-S模糊系統之輸出迴授增益值時是以矩陣型態呈現,控制器求解的過程一般都是轉換成線性矩陣不等式(Linear Matrix Inequalities - LMI) 來做處理,不過,當T-S 模糊系統所包含大量的模糊規則數,轉換後的LMI 總數目也急遽增加。在此情況下,LMI演算法之無解機率大幅提高,既使有解也需要高速的運算硬體執行解模糊化的計算。然而,模糊輸出迴授增益值比狀態迴授控制還要更複雜、更難設計的原因是這類問題無法轉換成LMI的形式來求解。故 (Non-LMI) NLMI的問題比LMI總數目遽增來的棘手許多。
瞭解前述一些問題的癥結所在,於是本論文利用模糊區域觀念 (Fuzzy Region Concept) 將原本的模糊子系統分割成數個模糊區域。由於一個模糊區域控制器必須使得數個模糊子系統穩定,於是在控制器的設計過程中引進強健控制的技巧。由上所述可知,本論文之目的就是設計相對應於每一個模糊區域的迴授增益值,然後使得整個T-S 模糊區域系統得以全區穩定,進而達到利用少量的模糊控制規則達到控制目的。本論文亦將模糊區域觀念處理非線性系統之非凸集合(non-convex)、NLMI問題, 於 條件下以求得輸出迴授控制器。於此,我們結合兩種演算法-基因演算法及LMI演算法,以達成模糊區域型-輸出迴授控制器之設計。本論文中,基因演算法扮演搜尋適合系統之輸出迴授增益值的角色,並加快基因演算法的速度。現在既然已經用基因演算法找出輸出迴授增益值了,非LMI的問題也就迎刃而解,而里阿伯諾穩定法則中的共同正定矩陣就可由LMI演算法輕易的求出。複合式演算法(GA/LMI)會相輔相成的調整最佳值,直到所有的穩定條件都滿足且符合需求。最後,本論文最主要的貢獻是 (i)當系統含有大量的模糊規則數時,利用模糊區域觀念減少控制規則數量。另一項優點為本方法可避免在PDC的設計中需考慮規則干擾的穩定性問題,(ii)所提出的複合式演算法(GA/LMI)成功的以簡單的想法、清楚的數學推導處理模糊區域靜態輸出迴授之穩定性問題。
In recent years, the majority of Takagi-Sugeno (T-S) fuzzy controller designs were developed by using the concept of Parallel Distributed Compensation (PDC) and the Lyapunov stability criterion. The stability conditions were solved by Linear Matrix Inequality (LMI) solver. PDC-based fuzzy controller involves many controller rules of LMIs if the T-S fuzzy model contains lots of plant rules. Especially in the static output feedback fuzzy control design, the design becomes much more difficult and complex than state feedback one because it belongs to a Non-Linear Matrix Inequalities (NLMIs) problem.
This dissertation uses the fuzzy region concept to partition the original plant rules into several fuzzy regions. The purpose of this dissertation is to design controller rules for each fuzzy region such that the overall fuzzy model is stabilized. In light of the aforementioned concerns, this dissertation also deals with the non-convex issue in a nonlinear system which was presented by the T-S fuzzy region system with sense. It is expected to mix a GA with an LMI solver to achieve the design purpose. The GA is employed for seeking suitable feedback gains from a prescribed fitness function. Since the feedback gains are given,the Lyapunov stability inequalities of static output feedback syntheses can be dealt with the LMI solver. To carry on, GA will support LMI to tune the solutions until all stability conditions are satisfied. This hybrid algorithm tackles the static output feedback fuzzy control problems with a simple idea and clear mathematical derivations. Finally, we emphasize that the main contributions of this dissertation are (i) the proposed region concept can greatly reduce the total number of LMIs and controller rules (ii) a simple and flexible method to solve this NLMI problem and find a regional static output feedback gain is proposed.
References
[1] Z. Li, J. B. Park, Y. H. Joo, Y. H. Choi, and G. R. Chen, "Anticontrol of chaos for discrete T-S fuzzy systems," IEEE Trans. Circuit Syst. Part: I, Vol. 49, No. 2, pp. 249-253, 2002.
[2] K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, NY: John Wiley & Son Inc., 2001.
[3] K. Tanaka and M. Sugeno, "Stability analysis and design of fuzzy control-systems," Fuzzy Sets Syst., Vol. 45, No. 2, pp. 135-156, 1992.
[4] T. Taniguchi, K. Tanaka, H. Ohtake, and H. O. Wang, "Model construction, rule reduction, and robust compensation for generalized form of takagi-sugeno fuzzy-systems," IEEE Trans. Fuzzy Syst., Vol. 9, No. 4, pp. 525-538, 2001.
[5] W. J. Chang and C. C. Sun, "Constrained fuzzy controller-design of discrete Takagi-Sugeno fuzzy models," Fuzzy Sets Syst., Vol. 133, No. 1, pp. 37-55, 2003.
[6] H. Y. Chung, S. M. Wu, F. M. Yu, and W. J. Chang, "Evolutionary design of static output feedback controller for T-S fuzzy systems," IET Control Theory Applications, Vol. 1, No. 4, pp. 1096-1103, 2007.
[7] C. C. Sun, S. M. Wu, H. Y. Chung, and W. J. Chang, "Design of Takagi-Sugeno fuzzy region controller based on rule reduction, robust control, and switching concept," ASME, J, Dynamic Systems, Measurement and Control, Vol. 129, No. 2, pp. 163-170, 2007.
[8] S. M. Wu, C. C. Sun, H. Y. Chung, and W. J. Chang, "Discrete H2/Hinf nonlinear controller design based on fuzzy region concept and takagi-sugeno fuzzy framework," IEEE Trans. Circuit Syst. Part:I, Vol. 53, No. 12, pp. 2838-2848, 2006.
[9] S. M. Wu, C. C. Sun, H. Y. Chung, and W. J. Chang, "T-S region-based fuzzy control with multiple performance constraints," ISA Transactions, Vol. 46, No. 1, pp. 85-93, 2007.
[10] S. M. Wu, C. C. Sun, H. Y. Chung, and W. J. Chang, "Mixed H2/Hinf region-based fuzzy controller design for continuous-time fuzzy systems," Journal of Intelligent and Fuzzy Systems, Vol. 18, No. 1, pp. 19-30, 2007.
[11] K. Tanaka, T. Ikeda, and H. O. Wang, "Fuzzy regulators and fuzzy observers - relaxed stability conditions and LMI-based designs," IEEE Trans. Fuzzy Syst., Vol. 6, No. 2, pp. 250-265, 1998.
[12] B. S. Chen, C. L. Tsai, and Y. F. Chen, "Mixed H2/Hinf filtering design in multirate transmultiplexer systems - LMI approach," IEEE Trans. Signal Process, Vol. 49, No. 11, pp. 2693-2701, 2001.
[13] T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control," IEEE Trans. Syst., Man, Cybern, Vol. 15, No. 1, pp. 116-132, 1985.
[14] S. J. Wu and C. T. Lin, "Discrete-time optimal fuzzy controller design: global concept approach," IEEE Trans. Fuzzy Syst., Vol. 10, No. 1, pp. 21-38, 2002.
[15] B. S. Chen, C. S. Tseng, and H. J. Uang, "Mixed H2/Hinf fuzzy output-feedback control design for nonlinear dynamic-systems - an LMI approach," IEEE Trans. Fuzzy Syst., Vol. 8, No. 1, pp. 249-265, 2000.
[16] W. J. Chang and S. M. Wu, "Continuous fuzzy controller design subject to minimizing control input energy with output variance constraints," European Journal of Control, Vol. 11, No. 3, pp. 269-277, 2005.
[17] W. J. Chang, C. C. Ku, and W. Chang, "Fuzzy control with passivity constraint for discrete affine T-S fuzzy systems," Proceedings of the First International Conference on Innovative Computing, Information and Control, Vol. 2, pp. 187-190, 2006.
[18] W. J. Chang and W. Chang, "Hinf fuzzy control for discrete affine Takagi-Sugeno fuzzy models with time delay effect," Proceedings of the IEEE International Conference on Mechatronics & Automation, Vol. 3, pp. 1503-1508, 2005.
[19] P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI Control Toolbox, The Math Work Inc., 1995.
[20] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Philadelphia, PA: SIAM, 1994.
[21] K. Tanaka, T. Kosaki, and H. O. Wang, "Backing control problem of a mobile robot with multiple trailers - fuzzy modeling and LMI-based design," IEEE Trans Syst. Man. Cybern. Part: C, Vol. 28, No. 3, pp. 329-337, 1998.
[22] C. H. Fang, Y. S. Liu, S. W. Kau, L. Hong, and C. H. Lee , "A new LMI-based approach to relaxed quadratic stabilization of T-S fuzzy control systems," IEEE Trans. Fuzzy Syst., Vol. 14, No. 3, pp. 386-397, 2006.
[23] G. Feng and D. Sun, "Generalized H2 controller synthesis of fuzzy dynamic-systems based on piecewise Lyapunov functions," IEEE Trans. Circuit Syst. Part: I, Vol. 49, No. 12, pp. 1843-1850, 2002.
[24] L. Wang, G. Feng, and T. Hesketh, "Piecewise generalised H2 controller synthesis of discrete-time fuzzy systems," IET Control Theory Applications, Vol. 151, No. 5, pp. 554-560, 2004.
[25] W. J. Wang and C. H. Sun, "A relaxed stability criterion for T-S fuzzy discrete systems," IEEE Trans. Syst. Man. Cybern. Part: B, Vol. 34, No. 5, pp. 2155-2158, 2004.
[26] W. M. Haddad and V. S. Chellaboina, "Robust nonlinear nonquadratic feedback control via parameter- dependent Lyapunov functions," Int. Journal Contr., Vol. 66, No. 6, pp. 843-861, 1997.
[27] H. Ohtake, K. Tanaka, and H. O. Wang, "Polar coordinate fuzzy controller design based on parameter dependent Lyapunov function," The 2005 IEEE International Conference on Fuzzy Systems, pp. 377-382, 2005.
[28] C. H. Sun and W. J. Wang, "An improved stability criterion for T-S fuzzy discrete systems via vertex expression," IEEE Trans. Syst. Man. Cybern. Part: B, Vol. 36, No. 3, pp. 672-678, 2006.
[29] K. Tanaka, M. Iwasaki, and H. O. Wang, "Switching control of an R/C hovercraft - stabilization and smooth switching," IEEE Trans. Syst. Man. Cybern. Part: B, Vol. 31, No. 6, pp. 853-863, 2001.
[30] Z. H. Xiu and G. Ren, "Stability analysis and systematic design of Takagi-Sugeno fuzzy control systems," Fuzzy Set Systems, Vol. 15, No. 1, pp. 119-138, 2005.
[31] S. Zhou, and G. Feng, "Generalised H2 controller synthesis for uncertain discrete-time fuzzy systems via basis-dependent Lyapunov functions," IET Control Theory Applications, Vol. 153, No. 1, pp. 74-80, 2006.
[32] C. L. Hwang, and S. Y. Han, "Fuzzy mixed H2/Hinf optimization-based decentralized model reference control and application to Piezo-driven XY table systems," IEEE Trans. Fuzzy Syst., Vol. 15, No. 2, pp. 145-160, 2007.
[33] Y. Y. Cao and P. M. Frank, "Robust Hinf disturbance attenuation for a class of uncertain discrete-time fuzzy-systems," IEEE Trans. Fuzzy Syst., Vol. 8, No. 1, pp. 406-415, 2000.
[34] Z. Shaosheng, J. Lam, and X. Z. Wei, "Control design for fuzzy systems based on relaxed nonquadratic stability and Hinf performance conditions," IEEE Trans. Fuzzy Syst., Vol. 15, No. 2, pp. 188-199, 2007.
[35] X. Shengyuan, and J. Lam, "Robust Hinf control for uncertain discrete-time-delay fuzzy systems via output feedback controllers," IEEE Trans. Fuzzy Syst., Vol. 13, No. 1, pp. 82-93, 2005.
[36] F. Herrera and M. Lozano, "Gradual distributed real-coded genetic algorithms," IEEE Trans. Evolu. Comput., Vol. 4, No. 1, pp. 43-63, 2000.
[37] M. A. Abramson, Genetic Algorithm and Direct Search Toolbox, Natick, MA: The Math Work Inc., 2004.
[38] M. Iwasaki, M. Miwa, and N. Matsui, "GA-based evolutionary identification algorithm for unknown structured mechatronic systems," IEEE Trans. Industrial Electronics, Vol. 52, No. 1, pp. 300-305, 2005.
[39] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Reading, MA: Addison-Wesley Inc., 1989.
[40] P. P. Khargonekar, I. R. Petersen, and K. Zhou, "Robust stabilization of uncertain linear systems: quadratic stabilizability and Hinf control theory," IEEE Trans. Automatic Control, Vol. 35, No. 3, pp. 356-361, 1990.
[41] M. C. de Oliveira, J. C. Geromel, and J. Bernussou, "An LMI optimization approach to multi-objective controller design for discrete-time systems," Proceedings of the 38th IEEE Decision and Control, pp. 3611-3616, 1999.
[42] K. Tanaka, T. Ikeda, and H. O. Wang, "Design of fuzzy control systems based on relaxed LMI stability conditions," Proceedings of the 35th IEEE Decision and Control, pp. 598-603, 1996.
[43] H. Yamamoto, and T. Furuhashi, "A new sufficient condition for stable fuzzy control system and its design method," IEEE Trans. Fuzzy Syst., Vol. 9, No. 4, pp. 554-569, 2001.
[44] C. H. Fang, Y. S. Liu, S. W. Kau, L. Hong and C. H. Lee, "A new LMI-based approach to relaxed quadratic stabilization of T-S fuzzy control systems," IEEE Trans. Fuzzy Syst., Vol. 14, No. 3, pp. 386-397, 2006.
[45] Z. Shaosheng, J. Lam, and X. Z. Wei, "Control design for fuzzy systems based on relaxed nonquadratic stability and Hinf performance conditions," IEEE Trans. Fuzzy Syst., Vol. 15, No. 2, pp. 188-199, 2007.
[46] K. Euntai and L. Heejin, "New approaches to relaxed quadratic stability condition of fuzzy control systems," IEEE Trans. Fuzzy Syst., Vol. 8, No. 5, pp. 523-534, 2000.
[47] H. Yong, W. Min, S. Jin-Hua and L. Guo-Ping, "Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties," IEEE Trans. Automatic Control, Vol. 49, No. 5, pp. 828-832, 2004.
[48] J. C. Lo and M. L. Lin, "Robust Hinf nonlinear control via fuzzy static output feedback," IEEE Trans. Circuits & Syst. Part: I, Vol. 50, No. 11, pp. 1494-1502, 2003.
[49] G. Garcia, B. Pradin and F. Zeng, "Stabilization of discrete time linear systems by static output feedback," IEEE Trans. Automatic Control, Vol. 46, No. 12, pp. 1954-1958, 2001.
[50] M. L. Lin and J. C. Lo, "Static nonlinear output feedback H2 control for T-S fuzzy models," The 12th IEEE Inter. Conf. on Fuzzy Systems, pp. 1380-1383, 2003.
[51] D. Huang, and K. N. Sing, "Robust Hinf static output feedback control of fuzzy systems: an ILMI approach," IEEE Trans. Systems, Man, and Cyber., Part: B, Vol. 36, No. 1, pp. 216-222, 2006.
[52] Y. S. Liu and C. H. Fang, "A new LMI-based approach to relaxed quadratic stabilization of T-S fuzzy control systems," IEEE International Conf., Syst. Man and Cyber., pp. 2255-2260, 2003.
[53] P. Gahinet , "Explicit controller formulas for LMI-based Hinf synthesis," Automatica, Vol. 32, No. 7, pp. 1007-1014, 1996.