跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉彥廷
Ya-Ting Liu
論文名稱: 應用 LRFM、BG/NBD、Gamma/Gamma 模型於零售電商顧客分群及購買行為預測 之研究
Using LRFM, BG/NBD, and Gamma/Gamma models for Customer Segmentation and Purchase Behavior Prediction on E-commerce Retailer
指導教授: 沈建文
Chien-wen Shen
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 企業管理學系
Department of Business Administration
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 63
中文關鍵詞: 集群分析顧客分群LRFM模型BG/NBD模型Gamma/Gamma 模型
外文關鍵詞: Customer segmentation, LRFM model, BG/NBD model, Gamma/Gamma model, Clustering analysis
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今在變化動盪的食品電商零售產業中,企業更需要保持競爭力同時與顧客建立起長期互動的關係,藉此增加公司的利潤。顧客分群對於多數企業而言,能使企業夠有效理解到顧客特徵與特性,提供企業在不同顧客之間下來分配合適資源;企業同時必須因應消費者行為模式的改變,面對消費者各式各樣的需求時,必須掌握顧客消費行為模式來洞察先機。

    本研究提出兩大研究目的,第一部份建立LRFM模型,採用資料探勘的技術,將顧客劃分為數種族群,並使用多維度顧客組合模式來挖掘出最高價值的顧客族群。第二部份建立機率模型,BG/NBD與Gamma/Gamma模型來預測顧客購買行為之特徵,模型在非契約市場環境中,藉此衡量顧客的長期獲利能力。

    最後,分群模型歸類為五群,挖掘出兩大高價值忠誠顧客族群,其他群族分別為高消耗顧客、不確定型新顧客、不確定型流失顧客等。模型特徵評估水準上,預期購買次數為R-squared為0.850、預期購買金額為 R-squared為0.877,預測特徵上有著良好的表現。將預測模型結合分群模型,分析不同群體間的特徵表現,為企業制定客製化行銷策略,提升企業的營運績效並降低整體成本,維護長期與顧客之互動關係,作為企業參考的依據。


    In today’s turbulent food e-commerce retail industry, businesses need to remain just as competitive while simultaneously establish long-term interaction with customers to increase profits. For many enterprises, customer segmentation enables them to effectively understand customer characteristics and allocate appropriate resources between different customers. Enterprises must also simultaneously respond to changes in consumer behavior and discover insights by applying probabilistic models.

    There are two major objectives in this research. First is to develop LRFM model with data mining approach for customer segmentation. Second is to apply BG/NBD and Gamma/Gamma models to predict customer purchase behavior. Both models are generally used in non-contractual market environments to measure customers’ long-term profitability. Results indicate that customer profiles can be classified into five groups, including high-cost consuming group, uncertain new customer group, uncertain lost customer group, and two groups of loyal high value customers. Regarding the accuracy of prediction models, the R-squared of the BG/NBD model for purchase frequency is 0.850, while the R-squared of the Gamma/Gamma model for purchase amount is 0.877. The results of the prediction models are integrated with segmentation model to analyze feature performance between different groups. The proposed models can help enterprise develop customized marketing strategies to bolster operational performance, while lower overall costs and maintain long-term interaction with customers.

    中文摘要 i ABSTRACT ii 致謝 iii 圖目錄 v 表目錄 vi 第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究目的 2 1-3 研究架構 3 第二章 文獻探討 5 2-1 電商零售業顧客分群相關研究 5 2-2 預測顧客消費行為之相關研究 9 第三章 研究方法 12 3-1 電商零售顧客分群模型 12 3-1-1 資料收集與定義 12 3-1-2 集群分析 13 3-1-3 LRFM模型 15 3-2 購買行為預測模型 16 3-2-1 BG/NBD模型 16 3-2-2 Gamma/Gamma模型 22 3-2-3 模型驗證指標 25 第四章 研究結果 27 4-1 資料處理流程 27 4-1-1 特徵定義與說明 27 4-1-2 極端值處理 29 4-2 電商零售顧客分群模型 31 4-3 顧客購買行為預測模型 40 第五章 結論與後續建議 47 5-1 研究結論 47 5-2 研究限制與未來發展 48 參考文獻 49

    Abirami, M., & Pattabiraman, V. (2016). Data mining approach for intelligent customer behavior analysis for a retail store. Proceedings of the 3rd International Symposium on Big Data and Cloud Computing Challenges (ISBCC–16’),
    Alderson, W. (2006). The analytical framework for marketing. In A twenty-first century guide to Aldersonian marketing thought (pp. 61-73). Springer.
    Alizadeh Zoeram, A., & Karimi Mazidi, A. R. (2018). New approach for customer clustering by integrating the LRFM model and fuzzy inference system. Iranian Journal of Management Studies, 11(2), 351-378.
    Alvandi, M., Fazli, S., Abdoli, F. S. J. I. R. J. o. A., & Sciences, B. (2012). K-Mean clustering method for analysis customer lifetime value with LRFM relationship model in banking services. 3(11), 2294-2302.
    Au, W.-H., & Chan, K. C. (2003). Mining fuzzy association rules in a bank-account database. IEEE Transactions on Fuzzy Systems, 11(2), 238-248.
    Bailey, J. (2018). Alternative clustering analysis: A review. Data Clustering, 535-550.
    Bhide, A. (1996). The Questions Every Entrepreneur Must Answer. Harvard Business Review.
    Borle, S., Singh, S. S., & Jain, D. C. (2008). Customer lifetime value measurement. Management science, 54(1), 100-112.
    Carter, N. M., Stearns, T. M., Reynolds, P. D., & Miller, B. A. (1994). New venture strategies: Theory development with an empirical base. Strategic Management Journal, 15(1), 21-41.
    Chan, C.-C. H. (2005). Online auction customer segmentation using a neural network model. International Journal of Applied Science and Engineering, 3(1), 101-109.
    Chang, H., & Tsay, S. (2004). Integrating of SOM and K-mean in data mining clustering: An empirical study of CRM and profitability evaluation. International Journal of Applied Science and Engineering.
    Chao, S.-H., Chen, M.-K., & Wu, H.-H. (2021). An LRFM model to analyze outpatient loyalty from a medical center in taiwan. SAGE Open, 11(3), 21582440211031899.
    Chen, D., Sain, S. L., & Guo, K. (2012). Data mining for the online retail industry: A case study of RFM model-based customer segmentation using data mining. Journal of Database Marketing & Customer Strategy Management, 19(3), 197-208.
    Chen, S., & Huang, M. (2011). Constructing credit auditing and control & management model with data mining technique. Expert systems with applications, 38(5), 5359-5365.
    Chen, Y.-L., Kuo, M.-H., Wu, S.-Y., & Tang, K. (2009). Discovering recency, frequency, and monetary (RFM) sequential patterns from customers’ purchasing data. Electronic Commerce Research and Applications, 8(5), 241-251.
    Chen, Y.-S., Cheng, C.-H., Lai, C.-J., Hsu, C.-Y., & Syu, H.-J. (2012). Identifying patients in target customer segments using a two-stage clustering-classification approach: A hospital-based assessment. Computers in biology and medicine, 42(2), 213-221.
    Cheng, C.-H., & Chen, Y.-S. (2009). Classifying the segmentation of customer value via RFM model and RS theory. Expert systems with applications, 36(3), 4176-4184.
    Chu, Y., Yang, H.-K., & Peng, W.-C. (2019). Predicting online user purchase behavior based on browsing history. 2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW),
    Coussement, K., & Van den Poel, D. (2008). Churn prediction in subscription services: An application of support vector machines while comparing two parameter-selection techniques. Expert systems with applications, 34(1), 313-327.
    Daly, J. L. (2002). Pricing for profitability: Activity-based pricing for competitive advantage. John Wiley & Sons.
    Davidovici-Nora, M. (2013). Innovation in business models in the video game industry: Free-To-Play or the gaming experience as a service. The computer games journal, 2(3), 22-51.
    de Carvalho Santos, G. V. (2020). Feature importance analysis for User Lifetime Value prediction in games using Machine Learning: an exploratory approach. DATA MINING

    Dhini, A., Budiani, L. R., & Laoh, E. (2020). Segmenting and Targeting the Potential Markets of a Muslim Fashion Company. 2020 International Conference on ICT for Smart Society (ICISS),
    Fader, P. S., & Hardie, B. G. (1996). Modeling consumer choice among SKUs. Journal of marketing Research, 33(4), 442-452.
    Fader, P. S., & Hardie, B. G. (2009). Probability models for customer-base analysis. Journal of interactive marketing, 23(1), 61-69.
    Fader, P. S., Hardie, B. G., & Lee, K. L. (2005a). “Counting your customers” the easy way: An alternative to the Pareto/NBD model. Marketing Science, 24(2), 275-284.
    Fader, P. S., Hardie, B. G., & Lee, K. L. (2005b). RFM and CLV: Using iso-value curves for customer base analysis. Journal of marketing Research, 42(4), 415-430.
    Fernandez, G. (2010). Data mining using SAS applications. CRC press.
    Fu, X., Chen, X., Shi, Y.-T., Bose, I., & Cai, S. J. D. S. S. (2017). User segmentation for retention management in online social games. 101, 51-68.
    Ghousi, R. (2015). Applying a decision support system for accident analysis by using data mining approach: A case study on one of the Iranian manufactures. Journal of Industrial and Systems Engineering, 8(3), 59-76.
    Glady, N., Baesens, B., & Croux, C. (2009a). Modeling churn using customer lifetime value. European Journal of Operational Research, 197(1), 402-411.
    Glady, N., Baesens, B., & Croux, C. (2009b). A modified Pareto/NBD approach for predicting customer lifetime value. Expert systems with applications, 36(2), 2062-2071.
    Gramling, K., Orschell, J., & Chernoff, J. (2021). How E-Commerce Fits into Retail's Post- Pandemic Future. Harvard Business Review.
    Ha, S. H., & Park, S. C. (1998). Application of data mining tools to hotel data mart on the Intranet for database marketing. Expert systems with applications, 15(1), 1-31.
    Hadden, J., Tiwari, A., Roy, R., & Ruta, D. (2007). Computer assisted customer churn management: State-of-the-art and future trends. Computers & Operations Research, 34(10), 2902-2917.
    Hamka, F., Bouwman, H., De Reuver, M., Kroesen, M. J. T., & Informatics. (2014). Mobile customer segmentation based on smartphone measurement. 31(2), 220-227.
    Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.
    Helgesen, Ø. (2006). Are loyal customers profitable? Customer satisfaction, customer (action) loyalty and customer profitability at the individual level. Journal of Marketing Management, 22(3-4), 245-266.
    Hosseini, S. M. S., Maleki, A., & Gholamian, M. R. (2010). Cluster analysis using data mining approach to develop CRM methodology to assess the customer loyalty. Expert systems with applications, 37(7), 5259-5264.
    Hosseini, Z. Z., & Mohammadzadeh, M. (2016). Knowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services. Iranian journal of pharmaceutical research: IJPR, 15(1), 355.
    Hu, Y.-H., & Yeh, T.-W. (2014). Discovering valuable frequent patterns based on RFM analysis without customer identification information. Knowledge-Based Systems, 61, 76-88.
    Huang, B., Kechadi, M. T., & Buckley, B. (2012). Customer churn prediction in telecommunications. Expert systems with applications, 39(1), 1414-1425.
    Huang, S.-C., Chang, E.-C., & Wu, H.-H. J. E. S. w. A. (2009). A case study of applying data mining techniques in an outfitter’s customer value analysis. 36(3), 5909-5915.
    Hughes, A. M. (2005). Strategic database marketing. McGraw-Hill Pub. Co.
    Jo-Ting, W., Shih-Yen, L., & Hsin-Hung, W. (2010). A review of the application of RFM model. African Journal of Business Management, 4(19), 4199-4206.
    Jonker, J.-J., Piersma, N., & Van den Poel, D. (2004). Joint optimization of customer segmentation and marketing policy to maximize long-term profitability. Expert systems with applications, 27(2), 159-168.
    Kagan, S., & Bekkerman, R. (2018). Predicting purchase behavior of website audiences. International Journal of Electronic Commerce, 22(4), 510-539.
    Kahreh, M. S., Tive, M., Babania, A., & Hesan, M. (2014). Analyzing the applications of customer lifetime value (CLV) based on benefit segmentation for the banking sector. Procedia-Social and Behavioral Sciences, 109, 590-594.
    Kandeil, D. A., Saad, A. A., & Youssef, S. M. (2014). A two-phase clustering analysis for B2B customer segmentation. 2014 International Conference on Intelligent Networking and Collaborative Systems,
    Keaveney, S. M., & Parthasarathy, M. (2001). Customer switching behavior in online services: An exploratory study of the role of selected attitudinal, behavioral, and demographic factors. Journal of the academy of marketing science, 29(4), 374-390.
    Khajvand, M., & Tarokh, M. J. (2011). Estimating customer future value of different customer segments based on adapted RFM model in retail banking context. Procedia Computer Science, 3, 1327-1332.
    Kirui, C., Hong, L., Cheruiyot, W., & Kirui, H. (2013). Predicting customer churn in mobile telephony industry using probabilistic classifiers in data mining. International Journal of Computer Science Issues (IJCSI), 10(2 Part 1), 165.
    Kotler, P., & Keller, K. L. (2016). A framework for marketing management. Pearson Boston, MA.
    Kumar, V., Dalla Pozza, I., Petersen, J. A., & Shah, D. (2009). Reversing the logic: The path to profitability through relationship marketing. Journal of interactive marketing, 23(2), 147-156.
    Kumar, V., & Reinartz, W. (2016). Creating enduring customer value. Journal of marketing, 80(6), 36-68.
    Kumar, V., & Reinartz, W. J. (2006). Customer relationship management: A databased approach. Wiley Hoboken.
    Lee, J., Jung, O., Lee, Y., Kim, O., & Park, C. (2021). A Comparison and Interpretation of Machine Learning Algorithm for the Prediction of Online Purchase Conversion. Journal of Theoretical and Applied Electronic Commerce Research, 16(5), 1472-1491.
    Lewis, P., & Thomas, H. (1990). The linkage between strategy, strategic groups, and performance in the UK retail grocery industry. Strategic Management Journal, 11(5), 385-397.
    Li, D.-C., Dai, W.-L., & Tseng, W.-T. J. E. S. w. A. (2011). A two-stage clustering method to analyze customer characteristics to build discriminative customer management: A case of textile manufacturing business. 38(6), 7186-7191.
    Lin, C. (2013). Application of fuzzy Delphi method (FDM) and fuzzy analytic hierarchy process (FAHP) to criteria weights for fashion design scheme evaluation. International Journal of Clothing Science and Technology.
    Liu, D.-R., Lai, C.-H., & Lee, W.-J. (2009). A hybrid of sequential rules and collaborative filtering for product recommendation. Information Sciences, 179(20), 3505-3519.
    Luo, X., Jiang, C., Wang, W., Xu, Y., Wang, J.-H., & Zhao, W. (2019). User behavior prediction in social networks using weighted extreme learning machine with distribution optimization. Future Generation Computer Systems, 93, 1023-1035.
    Madeira, S., & Sousa, J. M. (2002). Comparison of target selection methods in direct marketing. European symposium on intelligent technologies, hybrid systems and their implementation on smart adaptive systems,
    Michael, C. (2022). EY Future Consumer Index: Growing economic uncertainty and rising costs dent post-pandemic hopes.
    Miglautsch, J. R. (2000). Thoughts on RFM scoring. Journal of Database Marketing & Customer Strategy Management, 8(1), 67-72.
    Mzoughia, M. B., & Limam, M. (2015). An improved customer lifetime value model based on Markov chain. Applied Stochastic Models in Business and Industry, 31(4), 528-535.
    O'Connor, G. C., & O'Keefe, B. (1997). Viewing the Web as a marketplace: the case of small companies. Decision Support Systems, 21(3), 171-183.
    Parvaneh, A., Abbasimehr, H., & Tarokh, M. J. J. G. J. o. T. (2012). Data mining application in retailer segmentation based on LRFM variables: case study. 1.
    Payne, A., & Holt, S. (2001). Diagnosing customer value: integrating the value process and relationship marketing. British Journal of management, 12(2), 159-182.
    Peker, S., Kocyigit, A., & Eren, P. E. (2017). LRFMP model for customer segmentation in the grocery retail industry: a case study. Marketing Intelligence & Planning.
    Platzer, M., & Reutterer, T. (2016). Ticking away the moments: Timing regularity helps to better predict customer activity. Marketing Science, 35(5), 779-799.
    Reutterer, T. (2015). Models for Customer Valuation. Management Review, 43(4), 89-105.
    Rust, R. T., Kumar, V., & Venkatesan, R. (2011). Will the frog change into a prince? Predicting future customer profitability. International Journal of Research in Marketing, 28(4), 281-294.
    Rygielski, C., Wang, J.-C., & Yen, D. C. (2002). Data mining techniques for customer relationship management. Technology in society, 24(4), 483-502.
    Saltan, M., Terzi, S., & Küçüksille, E. U. (2011). Backcalculation of pavement layer moduli and Poisson’s ratio using data mining. Expert systems with applications, 38(3), 2600-2608.
    Schmittlein, D. C., Morrison, D. G., & Colombo, R. (1987). Counting your customers: Who-are they and what will they do next? Management science, 33(1), 1-24.
    Schneider, G. (2016). Electronic commerce. Cengage Learning.
    Sharma, S. (2021). Customer Lifetime Value Modelling. IEEE access.
    Sinaga, K. P., & Yang, M.-S. (2020). Unsupervised K-means clustering algorithm. IEEE access, 8, 80716-80727.
    Spring, P., Leeflang, P. S., & Wansbeek, T. (1999). The combination strategy to optimal target selection and offer segmentation in direct mail. Journal of Market-Focused Management, 4(3), 187-203.
    Swarts, K. M., Lehman, K., & Lewis, G. K. (2016). The use of social customer relationship management by building contractors: evidence from Tasmania. Construction Management and Economics, 34(4-5), 302-316.
    Swenson, E. R., Bastian, N. D., & Nembhard, H. B. (2016). Data analytics in health promotion: Health market segmentation and classification of total joint replacement surgery patients. Expert systems with applications, 60, 118-129.
    Tavakoli, M., Molavi, M., Masoumi, V., Mobini, M., Etemad, S., & Rahmani, R. (2018). Customer segmentation and strategy development based on user behavior analysis, RFM model and data mining techniques: a case study. 2018 IEEE 15th International Conference on e-Business Engineering (ICEBE),
    Tomkovick, C., & Miller, C. (2000). Perspective—riding the wind: managing new product development in an age of change. Journal of Product Innovation Management: AN INTERNATIONAL PUBLICATION OF THE PRODUCT DEVELOPMENT & MANAGEMENT ASSOCIATION, 17(6), 413-423.
    Vanderveld, A., Pandey, A., Han, A., & Parekh, R. (2016). An engagement-based customer lifetime value system for e-commerce. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining,
    Wübben, M., & Wangenheim, F. v. (2008). Instant customer base analysis: Managerial heuristics often “get it right”. Journal of marketing, 72(3), 82-93.
    Weber, B. G., & Mateas, M. (2009). A data mining approach to strategy prediction. 2009 IEEE Symposium on Computational Intelligence and Games,
    Webster Jr, F. E. (1992). The changing role of marketing in the corporation. Journal of marketing, 56(4), 1-17.
    Wei, J. T., Lin, S.-Y., Yang, Y.-Z., & Wu, H.-H. (2019). The application of data mining and RFM model in market segmentation of a veterinary hospital. Journal of Statistics and Management Systems, 22(6), 1049-1065.
    Wheaton, P. (2000). The Life cycle view of customers. US Banker, June, 110, 77-78.
    Xiao, S., Wei, C.-P., & Dong, M. (2016). Crowd intelligence: Analyzing online product reviews for preference measurement. Information & Management, 53(2), 169-182.
    Yao, Z., Sarlin, P., Eklund, T., & Back, B. (2014). Combining visual customer segmentation and response modeling. Neural Computing and Applications, 25(1), 123-134.
    Yoseph, F., & Heikkila, M. (2018). Segmenting retail customers with an enhanced RFM and a hybrid regression/clustering method. 2018 International Conference on Machine Learning and Data Engineering (iCMLDE),
    Zhao, G., Qian, X., & Xie, X. (2016). User-service rating prediction by exploring social users' rating behaviors. IEEE transactions on multimedia, 18(3), 496-506.
    Zhao, S., Wu, R., Tao, J., Qu, M., Zhao, M., Fan, C., & Zhao, H. (2022). perCLTV: A General System for Personalized Customer Lifetime Value Prediction in Online Games. ACM Transactions on Information Systems (TOIS).
    Zhao, Y., Luo, F., Chen, M., Wang, Y., Xia, J., Zhou, F., Wang, Y., Chen, Y., & Chen, W. (2018). Evaluating multi-dimensional visualizations for understanding fuzzy clusters. IEEE transactions on visualization and computer graphics, 25(1), 12-21.

    QR CODE
    :::