| 研究生: |
林祐諄 Yu-Chun Lin |
|---|---|
| 論文名稱: |
考慮再生能源之最佳化快速機率潮流以求解無效電力 Optimal FPPF Considering Renewables Energy Resource for VAR Control |
| 指導教授: | 林法正 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 再生能源 、分散式發電 、無效功率控制 、機率潮流 、隨機變數 、累積元 、平均數-變異數 、粒子群演算法 |
| 外文關鍵詞: | Renewable energy, distributed generations, VAR control, probabilistic power flow, random variables, cumulant, mean-variance, particle swarm optimization |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
如今由於分散式發電的比重越來越高,配電系統虛功控制的作用變得至關重要。適當的虛功控制,可調節電壓並降低電力系統中的實功率損耗。然而,間歇性特徵的分散式發電機,例如可再生能源的風能和太陽能發電等,會在電力系統中產生發電的不確定性。因此,本論文提出了一種基於Gram-Charlier級數展開的新型快速機率潮流法,以應對這種不確定性。此外,快速機率潮流只處理隨機變數中關於預期值的變化,從而減少迭代的次數。
本論文還提出了一種結合平均數-變異數和粒子群的演算法,稱為平均數-變異數粒子群演算法。模擬結果證明,在解決幾個複雜數學函數快速機率潮流最佳解下,其準確性和收斂率方面有良好的表現。此外,採用平均數-變異數粒子群演算法獲得最佳的發電機電壓、變壓器分接頭和靜態補償,來盡量減少實功率損耗,同時其隨機電壓會滿足限制,並透過使用獨立的25-Bus(澎湖)系統的模擬驗證所提出的方法的實用性。最後和考慮傳統的機率潮流進行比較。
The role of reactive power control in a distribution system becomes essential due to the high penetration of distributed generations (DGs) nowadays. Proper reactive power control can regulate the voltage profile and reduce real power losses in a power system. However, intermittent characteristics of distributed generations (e.g., renewable energies from wind and solar power) impose uncertainty of power generation on operators in the power system. Therefore, this thesis presents a novel fast probabilistic power flow (FPPF) method based on the Gram-Charlier series expansion to deal with such uncertainty. The FPPF method, in which PV and PQ buses are considered, is presented. In addition, the FPPF method only deals with variations of random variables with respect to the expected values, thus reducing the number of iterations.
This thesis also proposes a combination of mean-variance and particle swarm optimization algorithm, named mean-variance particle swarm optimization (MVPSO). In solving the optimal solutions of several complex mathematical functions, the excellent performance of MVPSO in accuracy and convergence rate can be shown by simulated results. Moreover, MVPSO is adopted to obtain the optimal values of generator voltages, transformer taps and static compensators to minimize the real power losses while the stochastic voltages satisfy the operational limits. Applicability of the proposed method is verified through simulation using an autonomous 25-bus (Penghu) system. Comparative studies considering traditional probabilistic power flow (TPPF) are performed as well.
[1] 羅天賜、陳清山,風力發電對配電系統電壓控制之影響分析,第26屆電力研討會,第1692~1696頁。
[2] Engineering Guide for Integration of Distributed Generation and Storage into Power Distribution Systems, EPRI Technical Report TR-100419, December 2000.
[3] M. H. Abdel-Rahman, F. M. H. Youssef, and A. A. Saber, “New static var compensator control strategy and coordination with under-load tap changer,” IEEE Trans. Power Delivery, vol. 21, no. 3, pp.1630-1635, July 2006.
[4] R. H. Liang and C. K. Cheng, “Dispatch of main transformer ULTC and capacitors in a distribution system,” IEEE Trans. Power Delivery, vol. 16, no. 4, pp.625-630, Oct. 2001.
[5] R. H. Liang and Y. S. Wang, “Fuzzy-based reactive power and voltage control in a distribution system,” IEEE Trans. Power Delivery, vol. 18, no. 2, pp.610-618, April 2003.
[6] C. T. Su and C. T. Lin, “Fuzzy-based voltage/reactive power scheduling for voltage security improvement and loss reduction,” IEEE Trans. Power Delivery, vol. 16, no. 2, pp.319-323, April 2001.
[7] C. H. Liang, C. Y. Chung, K. P. Wong, and X. Z. Duan, “Parallel optimal reactive power flow based on cooperative co-evolutionary differential evolution and power system decomposition,” IEEE Trans. Power Delivery, vol. 22, no. 1, pp.319-323, Feb. 2007.
[8] Y. Y. Hong and Y. F. Luo, “Optimal VAR control considering wind farms using probabilistic load flow and Gray-based genetic algorithms,” IEEE Trans. Power Delivery, vol. 24, no. 3, pp. 1441-1449, July 2009.
[9] L. F. Ochoa, A. Keane, and G.P. Harrison, “Minimizing the reactive support for distributed generation: enhanced passive operation and smart distribution networks,” IEEE Trans. Power Systems, vol. 26, no. 4, pp. 2134-2142, Nov. 2011.
[10] T. Sansawatt, L. F. Ochoa, and G. P. Harrison, “Smart decentralized control of DG for voltage and thermal constraint management,” IEEE Trans. Power Systems, vol. 27, no. 3, pp. 1637-1645, Aug. 2012.
[11] T. Niknam, M. Zare, and J. Aghaei, “Scenario-based multiobjective Volt/Var control in distribution networks including renewable energy sources,” IEEE Trans. Power Delivery, vol. 27, no. 4, pp. 2004-2019, Oct. 2012.
[12] L. F. Ochoa and G. P. Harrison, “Minimizing energy losses: optimal accommodation and smart operation of renewable distributed generation,” IEEE Trans. Power Systems, vol. 26, no. 1, pp. 198-205, Feb. 2011.
[13] P. N. Vovos, A. E. Kiprakis, A. R. Wallace, and G. P. Harrison, “Centralized and distributed voltage control: impact on distributed generation penetration,” IEEE Trans. Power Systems, vol. 22, no. 1, pp. 476-483, Feb. 2007.
[14] C. L. Su, “Probabilistic load-flow computation using point estimate method,” IEEE Trans. Power Systems, vol. 20, no. 4, pp. 1843-1851, Nov. 2005.
[15] J. M. Morales and J. Pérez-Ruiz, “Point estimate schemes to solve the probabilistic power flow,” IEEE Trans. Power Systems, vol. 22, no. 4, pp. 1594-1601, Nov. 2007.
[16] P. Zhang and S. T. Lee, “Probabilistic load flow computation using the method of combined cumulants and Gram-Charlier expansion, ” IEEE Trans. Power Systems, vol. 19, pp. 676-682, 2004.
[17] H. Yu, C. Y. Chung, K. P. Wong, H. W. Lee, and J. H. Zhang, “Probabilistic load flow evaluation with hybrid Latin hypercube sampling and Cholesky decomposition,” IEEE Trans. Power Systems, vol. 24, no. 2, pp. 661-667, May 2009.
[18] A. P. S. Meliopoulos, G. J. Cokkinides, and X.Y. Chao, “A new probabilistic power flow analysis method,” IEEE Trans. Power Systems, vol. 5, no. 1, pp. 182-190, 1990.
[19] ANSI C84.1-1995, Electric Power Systems and Equipment—Voltage Ratings (60 Hz)
[20] ANSI C92.9-1987
[21] 江龍生,考慮風力發電併網之配電饋線電壓控制研究,碩士論文,台灣科技大學,民國94年6月。
[22] IEEE Std 141-1993, IEEE recommended practice for electric power distribution for industrial plants.
[23] 陳在相、楊文治、掌易、楊念哲、江龍生、張家豪,配電饋線電壓品質控制技術之調查研究,台灣電力股份有限公司研究計畫,期中報告,九十三年十一月。
[24] Turan Gonen, Electric power distribution system engineering, McGraw-Hill, 1986.
[25] 薛小生、黃郁東,工業配電,弘揚品書有限公司,民國83年9月。
[26] 曾國雄、譚旦旭,配線設計,民國八十年。
[27] 熊信銀、吳耀武,遺傳算法及其在電力系統中的應用,華中科技大學出版社,民國91年1月。
[28] 鄧禮濤,結合智慧型控制與改良型粒子群尋優法之風力驅動感應發系統,博士論文,國立東華大學,民國九十七年七月。
[29] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. IEEE Int. Conf. Neural Networks, pp. 1942-1948, 1995.
[30] Mistsuo Gen, and Runwei Cheng, “Genetic Algorithms and Engineering Design,” John Wiley & Sons, New York, 1997.
[31] X. Wang, and J. R. McDonald, Modern Power System Planning, Singapore, 1990.
[32] 羅一峰,應用累積元與基因演算法求解配電系統無效電力控制,碩士論文,中原大學,民國96年7月。
[33] K. De Jong, “An analysis of the behavior of a class of genetic adaptive systems,” Ph.D. dissertation, University of Michigan, 1975.
[34] H. Rosenbrock, “An automatic method for finding the greatest or the least value of a function,” The Computer Journal, vol. 3, no. 3, pp. 175–184, 1960.
[35] A. Torn and A. Zilinskas, “Global Optimization,” Lecture Notes in Computer Science, vol. 350, 1989.
[36] D. H. Ackley, A connectionist machine for genetic hillclimbing. Boston: Kluwer, 1987.
[37] T. Back, Evolutionary algorithms in theory and practice. Oxford University Press, 1996.
[38] T. Niknam, “Improved particle swarm optimisation for multi-objective optimal power flow considering the cost, loss, emission and voltage stability index,”IET Gener. Transm. Distrib., 2012, Vol. 6, Iss. 6, pp. 515–527
[39] 林士鈞,考慮澎湖離岸式風力發電與台澎海底電纜之特殊保護系統,碩士論文,中原大學,民國95年7月。
[40] 林水秀,澎湖地區風力發電最大併聯容量,台電綜合研究所,技術服務報告,2004年7月。
[41] 張慶南,澎湖電力系統運轉特性之研究,碩士論文,臺灣科技大學,民國94年7月。