跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張耀輝
Yiang-Xian Chang
論文名稱: 半弧形管內兩相流譜與壓降分析
指導教授: 楊建裕
Chien-Yuh Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 88
語文別: 中文
論文頁數: 154
中文關鍵詞: 太陽能熱水器熱管流譜壓降半弧形管
外文關鍵詞: solar water heater, heat pipe, flow pattern, pressure drop, semi-arc tube
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 甲醇實驗因為絕熱問題無法解決而告中斷。冷媒R-134a流譜實驗結果顯示,由於流量計量測範圍不夠小的影響,造成實驗流譜圖內並無平滑分離流與波浪分離流流譜的存在,而半弧形管則因設計的因素亦無法觀測到此二流譜。冷媒R-134a在半弧形管內流動,邊緣尖角將有助於形成液體於邊緣流動的現象,並因此而減少了流動壓降。
    無論是管徑、管形或流體性質都對流譜的分佈造成很大的影響,因此需要針對不同因素改變後的管子做個別的流譜實驗分析。而Taitel & Dulker[1976]和Barnea et al.[1983]的流譜預測模型,與本實驗結果比較發現並不正確。
    1mm管內壓降實驗結果顯示,由Chisholm[1967]所提出的兩相摩擦倍數預測式,對環狀流流譜形態的實驗數據點,有不錯的預測結果。Friedel[1979]所提出的兩相摩擦倍數預測式,在較高質量速度時有較好的預測。但無任何一個兩相摩擦倍數預測式,能正確預測其在半弧形管的結果。


    目錄 頁數 摘要…………………………………………………………………... i 目錄…………………………………………………………………... ii 表目錄……………………………………………………………….. vi 圖目錄………………………………………………………………... vii 符號說明……………………………………………………………. xii 第一章 前言……………………………………………………..… 1 1.1 研究動機與背景…………………………….…………... 1 1.2 研究目的………………………………………………… 4 第二章 文獻回顧………………………………………………….. 9 2.1 熱管的應用與研究…………………………..………….. 9 2.1.1 熱管於太陽能集熱器的應用………………..…….. 9 2.1.2 無蕊材熱管的研究 ……………………………….. 10 2.1.3 熱管的驅動力……...………………………….…… 10 2.1.3.1 重力……………………………………………. 11 2.1.3.2 表面張力….………………………………… 11 2.1.4 熱管操作極限 ..….………………………..…….… 14 2.2 兩相流譜…………………………………………….… 17 2.2.1 研究動機……………………………………….…… 17 2.2.2 流譜型態種類………………………………………. 18 2.2.3 流譜預測方法………………………………………. 20 2.2.3.1 水-空氣系統……………………………………. 20 2.2.3.2 冷媒R-134a系統………………………….….… 25 2.2.4 微小管內之流譜分析……….……………………… 26 2.2.4.1 圓形管內之流譜分析………….…………….… 26 2.2.4.1.1 水-空氣系統……………………………… 26 2.2.4.1.2 冷媒R-134a系統……………………….… 28 2.2.4.2 半弧形管內之流譜觀察……….…………….… 29 2.2.5 熱管內的流譜觀察..…………..………………….… 30 2.3 兩相壓降………………….……………………………. 31 2.3.1 分離流模式…………………………………………. 31 2.3.2 均質流模式…………………………………………. 36 2.3.3 微小管內之壓降分析……………………….…….…. 37 2.3.3.1 微小圓形管內之壓降分析…………………....… 37 2.3.3.2 半弧形管管內之壓降分析…………..…….….… 39 第三章 實驗系統及分析方法……………………………………... 67 3.1簡介………………………………………………..………. 67 3.2實驗系統…….…………………………………………….. 68 3.2.1 測試段….…………………………………………….. 68 3.2.1.1 半弧形管測試段 ….………………….…….…. 68 3.2.1.2 圓管測試段….……………..……………………. 69 3.2.2循環系統…………………………………………….... 69 3.2.3 實驗儀器設備………………………………………... 70 3.2.3.1 溫度量測…………………………………….... 70 3.2.3.2 壓力量測……………………….……………. 70 3.2.3.3 差壓量測………………………………..…… 71 3.2.3.4 工作流體流量量測………………………..… 71 3.2.3.5 工作流體控制幫浦……………………………. 72 3.2.3.6 預熱器、鼠籠式變壓器、數位式瓦特計…… 72 3.2.3.7 接收器、過濾器………………………..……... 72 3.2.3.8 恆溫槽…………………………………………. 72 3.2.2.9 顯微照相機……………………………………. 73 3.2.2.10 照明設備……………………………………... 73 3.2.2.11資料擷取系統………………………………… 73 3.3 工作流體的熱力物理性質……………………………… 74 3.3.1 甲醇的熱力物理性質………………………….…… 74 3.3.2 冷媒的熱力物理性質………………………….…… 74 3.4 實驗過程……………………………………………….... 74 3.4.1系統測漏…………………………………………..… 74 3.4.2系統填充工作流體…………………………..……… 75 3.4.2.1 填充甲醇……………………………….…… 75 3.4.2.2 填充冷媒………………………………….… 75 3.4.3實驗操作步驟……………………………………..… 76 3.5 實驗分析………………………………………………… 77 3.5.1 流譜型態分析………………………………………. 78 3.5.2 兩相流譜實驗數據換算……………………….…… 78 3.5.3 兩相壓降實驗數據換算………………………….… 80 3.5.4 兩相壓擦倍數……………………………….……… 82 第四章 結果與討論……………………………………..….…… 101 4.1兩相流譜……………………………………………..….. 101 4.1.1冷媒R-134a流譜觀測照片…………………… 101 4.1.2 冷媒R-134a流譜觀察………………………… 102 4.1.2.1 圓管實驗結果分析…………….……………... 102 4.1.2.2 半弧形管實驗結果分析……………………… 102 4.1.3 管形、管徑、流體性質對流譜區域的影響…... 103 4.1.3.1 管徑對流譜區域的影響…………..……… 103 4.1.3.2 管形對流譜區域的影響……………….… 104 4.1.3.3 流體性質對流譜區域的影響………….… 105 4.1.3.4 實驗結果與理論預測模式比較…..……… 105 4.1.3.5 總結…………………………….…….….. 106 4.1.4 甲醇實驗結果…………………………...…….….. 106 4.2 兩相壓降……………………………………………….. 107 4.2.1兩相流之摩擦壓降梯度………………………….…107 4.2.2 兩相摩擦倍數………………………………………109 4.2.2.1 實驗結果與Chisholm[1967]關係式的比較.… 109 4.2.2.2 實驗結果與Friedel[1979]關係式預測值之比較 111 4.2.2.3 管子形狀、工作流體與管子尺寸對兩相摩擦倍 數預測值的影響……………………………… 111 第五章 結論…………………………………………………….... 143 5.1 兩相流譜………………………………………………... 143 5.2 壓降……………………………………………….……. 144 參考文獻………………………………………………………….... 146 附錄……………………………………………………………….... 151 表目錄 頁數 表2-1 管徑尺寸詳細資料表…………...........................…………….41 表2-2 兩相流動狀態與相對應之C值.....................………….....…. 42 表2-3 矩行管兩相流譜實驗…………....……………................…....43 表3-1 實驗系統實驗測試狀況表……..………………......................84 表3-2 實驗設備誤差表…………………………..….....................…. 84 表3-3 實驗系統的實驗參數誤差表.......…………………........….... 85 表3-4 甲醇在飽和溫度80℃的熱力性質表.…………….........… 86 表3-5 冷媒HFC-134a在飽和溫度30℃的熱力性質表………..… 87 圖目錄 頁數 圖1-1 太陽能熱水器示意圖…….……………………………………5 圖1-2 熱管構造與原理示意圖………………………………………6 圖1-3 太陽能熱管集熱器示意圖……………………………………7 圖1-4 半弧形熱管太陽能熱水器示意圖….…………….………….8 圖2-1 液體與固體接觸之薄液層示意圖………….………..……..... 44 圖2-2 液體在固體牆面的液面形狀……….………………………...45 圖2-3 熱管液面曲率與壓力分布圖.……….…………………..…...46 圖2-4 熱管操作的極限………………………………………..…….. 47 圖2-5 水平管內之兩相流譜……………………….………..……… 48 圖2-6 水平管內之流譜型態種類…….……………………..……… 49 圖2-7 微小水平管內Barajas & Panton[1993]新發現之流譜型態示 意圖………………………………..………………………… 50 圖2-8 Baker [1954]流譜圖…….……………………………...……51 圖2-9 Mandhane et al. [1974]流譜圖………………….…...……..... 52 圖2-10 分離流平衡模型圖…………………………………...…..…. 52 圖2-11分離流狀態下存在的不穩定波示意圖……...……………... 53 圖2-12 Taitel & Dulker [1976]流譜圖……….………………....…… 53 圖2-13水平管在管徑2.5cm的流譜實驗數據與Mandhane et al. [1974]流譜圖及Taitel & Dulker [1976]理論值之比較……. 54 圖2-14 Wang et al.[1997]的實驗數據與Weisman et al.[1979]的預 測關係式之比較…..……………..………………………..… 55 圖2-15Barnea et al.[1983]水平管流譜實驗圖…………...………… 56 圖2-16表面張力造成液體高度變化示意圖………...……………... 57 圖2-17 Damianides & Westwater[1988]管徑1mm的實驗數據與 Taitel & Dulker[1976]及Barnea et al.[1983]理論值之比較 58 圖2-18 Barajs & Panton[1993]管徑1.6mm的實驗數據與Taitel & Dulker[1976]及Barnea et al.[1983]理論值之比較……….. 59 圖2-19 Fukano & Kariyasaki [1993]管徑1-4.9mm的實驗數據與 Taitel & Dulker [1976]理論值之比較…………….….…..… 60 圖2-20 謝&楊[1998] 管徑2mm的實驗數據與Taitel & Dulker [1976]理論值之比較…….………..…………..….………… 61 圖2-21 Damianides & Westwater [1988]、Barajs & Panton[1993] 及Fukano & Kariyasaki [1993]等實驗數據比較…………. 62 圖2-22 謝&楊[1998] 管徑2mm的實驗數據與Taitel & Dulker [1976]理論值之比較.………..………………..….………… 63 圖2-23 Chen et al.[1992]觀察到熱管的四種基本流譜……….. 64 圖2-24 Chen et al.[1992]觀察到熱管中的流譜圖…....…..…… 65 圖2-25 Lockhart-Martinelli [1949]兩相摩擦倍數 及 對 Martinelli參數Χ之關係圖….……….………….…….……. 66 圖3-1 實驗系統平面圖…………………………………..………… 88 圖3-2 實驗系統立體圖…………………………………………... 88 圖3-3 測試段黃銅底板圖……………………………………..…. 89 圖3-4 測試段PVC上蓋圖…………………………..…………... 90 圖3-5 測試段剖面示意圖…………………………………..…… 91 圖3-6 圓管測試段剖面示意圖………………………………..… 92 圖3-7 流量計入口RTD校正曲線圖……………………….… 93 圖3-8 測試段入口RTD校正曲線圖…………………….…… 94 圖3-9測試段出口RTD校正曲線圖…………………….…….. 95 圖3-10 100psi壓力轉換器校正曲線圖…………………………….. 96 圖3-11 300psi壓力轉換器校正曲線圖…………………………….. 97 圖3-12 100KPa差壓轉換器校正曲線圖………….……….………. 98 圖3-13 300KPa差壓轉換器校正曲線圖………………….……….. 99 圖3-14資料擷取系統示意圖………………………….…………… 100 圖4-1 兩相流譜實驗所拍攝的各種流譜型態照片………...... 114 圖4-2 半弧形管各種流譜形態…………………………………115 圖4-3 冷媒R-134a在內徑1mm圓形管所獲得的實驗流譜圖.116 圖4-4 冷媒R-134a在內徑2mm圓形管所獲得的實驗流譜圖.117 圖4-5在1mm圓管質量速度50 (kg/m2s),乾度0.73時出現的 分離流與波浪流流動現象…………………………………118 圖4-6 冷媒R-134a兩相流在水力直徑1mm半弧形管所獲得的實 驗流譜圖…………………………………………….……119 圖4-7 冷媒R-134a在管徑1mm與2mm圓形管所獲得的實驗流譜 圖之比較…………………………………………….……120 圖4-8 冷媒R-134a在管徑1mmm圓管與半弧形管所獲得的實驗流 譜圖之比較…………………………………………..…..121 圖4-9 冷媒R-134a在半弧形管與水-空氣在半三角形管(Triplett et al.[1999])所獲得的實驗流譜圖之比較…………….…..122 圖4-10 冷媒R-134a與水-空氣(Damianides & Westwater [1988])在 1mm圓管所獲得的實驗流譜圖之比較…………..……123 圖4-11 冷媒R-134a與水-空氣(Damianides & Westwater [1988])在 半弧形管所獲得的實驗流譜圖之比較………………....124 圖4-12 冷媒R-134a在1mm圓管所獲得的實驗流譜圖與Taitel & Dulker[1976], Barnea et al.[1983]流譜預測模型之比較 125 圖4-13 冷媒R-134a在半弧形管所獲得的實驗流譜圖與Taitel & Dulker[1976], Barnea et al.[1983]流譜預測模型之比較….. 126 圖4-14 甲醇在管徑1mm圓形管所獲得的實驗流譜圖………..….127 圖4-151mm圓管壓降梯度vs.乾度曲線圖…………………………128 圖4-16半弧形管壓降梯度vs.乾度曲線圖…………………..…….129 圖4-171mmm圓管、2mm圓管與半弧形管壓降梯度vs.乾度曲線 之比較圖…………………..…………………………….….…130 圖4-18冷媒R-134a在1mmm圓管的兩相壓降實驗數據與Chi- -sholm式之比較圖………………………………………...131 圖4-19冷媒R-134a在1mmm圓管的兩相壓降實驗數據與Chi- -sholme關係式預測值之比較圖……………………………132 圖4-20冷媒R-134a在半弧形管的兩相壓降實驗數據與Chi- -sholm關係式預測值之比較圖…………………………….133 圖4-21冷媒R-134a在半弧形管的兩相壓降實驗數據與Chi- -sholm關係式預測值之比較圖…………………………..…134 圖4-22冷媒R-134a在1mmm圓管的實驗數據與Friedel[1979] 關係式預測值之比較圖……………………………………..135 圖4-23冷媒R-134a在半弧形管的實驗數據與Friedel[1979] 預測式之比較圖…………………………………………….136 圖4-24冷媒R-134a在1mm圓管中之兩相壓降實驗數據與Wambsganss[1991]關係式預測值比較圖………….137 圖4-25冷媒R-134a在半弧形管中之兩相壓降實驗數據與Wambsganss[1991]關係式預測值比較圖………….138 圖4-26冷媒R-134a在1mmm圓管的兩相壓降實驗數據與 Kuo & Wang[1996]式子之比較圖……………………….…139 圖4-27冷媒R-134a在半弧形管的兩相壓降實驗數據與Kuo & Wang[1996]式之比較圖……………………………….……140 圖4-28冷媒R-134a在1mm圓管中之兩相壓降實驗數據與 Mishima & Hibiki[1996]關係式預測值比較圖….…141 圖4-29冷媒R-134a在1mm圓管中之兩相壓降實驗數據與 Mishima & Hibiki[1996]關係式預測值比較圖….…142

    Alves, G. E., 1954, “Co-current Liquid-gas Flow in A Pipeline Contactor,”
    Chem. Process. Engng, Vol. 50, No.4, pp. 449-456
    Akyurt, M., 1984, “Development of Heat Pipes for Solar Water Heater,”
    Solar Energy, Vol.32, pp.625-631. Quoted in 經濟部能源委員會
    [1994].
    Bairamov, R., and Toiliev, K. 1981, “Heat Pipes in Solar Collectors,” Proc. 4th International Heat Pipe Conference, pp.47-54.
    Baker, O., 1954,”Design of Pipe Lines for Simultaneous Flow of Oil and
    Gas,”Oil and Gas J., 53, pp. 185-195
    Bankoff, S. G., 1960, “A Variable Density Single-Fluid Model for Two Phase Flow With Particular Reference to Steam-Water Flow,” Journal of Heat Transfer, Vol. 82, No. 4, pp. 265-272
    Barajas, A.M., & Panton R. L., 1993, “The Effects of Contact Angle on Two-Phase Flow in Capillary Tubes,” International Journal Multiphase Flow, Vol. 19,No.2, pp. 337-446
    Barnea, D., Shoham, O., and Taitel, Y., 1980, “Flow Pattern Transition For Gas-Liquid Flow in Horizontal and Inclined Pipes,” International Journal Multiphase Flow, Vol. 6, pp. 217-225
    Barnea, D., Shoham, O., and Taitel, Y., 1980, “Flow Pattern Transition For Gas-Liquid Flow in Horizontal and Inclined Pipes,” International Journal Multiphase Flow, Vol. 6, pp. 217-225
    Bienert, W. B., and Wolf, D. A., 1976, “Heat Pipes in Flat Solar Collectors,” ASME paper 76-WA/SOL-12, pp.11. Quoted in 經濟部能源委員會[1994].
    Bienert, W. B., and Wolf, D. A., 1976, “Heat Pipes in Flat Solar Collectors,” ASME paper 76-WA/SOL-12, pp.11. Quoted in 經濟部能源委員會[1994].
    Calvert, S., & Williams, B., 1955, “Upward Co-current Annular Flow of Air and Water in Smooth Tubes,” AIChE Journal, Vol. 1, No. 1, pp. 78-86
    Calvert, S., & Williams, B., 1955, “Upward Co-current Annular Flow of Air and Water in Smooth Tubes,” AIChE Journal, Vol. 1, No. 1, pp. 78-86
    Chisholm, D., 1955, “Comments on Thom’s Paper “Pressure Drop During Forced Circulation Boiling of Water,” International Journal of Heat and Mass Transfer, Vol. 8, pp. 187-188
    Chisholm, D., 1967, “A Theoretical Basis for The Lockhart-Martinelli Correlation for Two-Phase Flow,” International Journal of Heat and Mass Transfer, Vol. 10, pp. 1767-1778
    Chisholm, D., 1967, “A Theoretical Basis for The Lockhart-Martinelli Correlation for Two-Phase Flow,” International Journal of Heat and Mass Transfer, Vol. 10, pp. 1767-1778
    Chisholm, D., 1967, “A Theoretical Basis for The Lockhart-Martinelli Correlation for Two-Phase Flow,” International Journal of Heat and Mass Transfer, Vol. 10, pp. 1767-1778
    Chisholm, D., 1967, “A Theoretical Basis for The Lockhart-Martinelli Correlation for Two-Phase Flow,” International Journal of Heat and Mass Transfer, Vol. 10, pp. 1767-1778
    Cotter, T. P., 1984, “Principles and Prospects of Micro Pipes,” Proc. 5th International Heat Pipe Conference, Tsukuba, Japan, pp.328-335.Quated in Peterson[1992].
    Damianides, C. A., & Westwater, J. W., 1988, “Two-Phase Flow in a Compact Heat Exchanger and in Small Tubes,” In Proceedings 2nd UK Natn Conf. On Heat Transfer, Vol. II, pp. 1257-1268
    Damianides, C. A., & Westwater, J. W., 1988, “Two-Phase Flow in a Compact Heat Exchanger and in Small Tubes,” In Proceedings 2nd UK Natn Conf. On Heat Transfer, Vol. II, pp. 1257-1268
    Damianides, C. A., & Westwater, J. W., 1988, “Two-Phase Flow in a Compact Heat Exchanger and in Small Tubes,” In Proceedings 2nd UK Natn Conf. On Heat Transfer, Vol. II, pp. 1257-1268
    Dunn, P. D., and Reay, D. A., 1982, Heat Pipes, 3rd education, Pergamon Press, New York. Quoted in Rohsenow et al.(1998).
    Faghri, A., Heat Pipe Science and Technology, 1995, Taylor & Francis Publishing Company, Washington, DC.
    Fukano, Tohru., Kariyasaki, Akire., 1993, “Characteristics of Gas-Liquid Two-Phase Flow in a Capillary tube, “Nuclear Engineering and Design, Vol. 141, pp. 59-68 North-Holland
    Fukano, Tohru., Kariyasaki, Akire., 1993, “Characteristics of Gas-Liquid Two-Phase Flow in a Capillary tube, “Nuclear Engineering and Design, Vol. 141, pp. 59-68 North-Holland
    Hashizume, K., 1983, “Flow Pattern and Void Fraction of Refrigerant Two-Phase Flow in a Horizontal Pipe,” Bull. JSME, Vol. 26, pp. 1597-1602
    Henstock, W. H., & Hanratty, T. J., 1976, “ The Interfacial Drag and The Height of The Wall Layer in Annular Flows,” AIChE Journal, Vol. 22, No. 6, pp. 990-1000
    Hosler, E. R., 1968, “Flow pattern in high pressure two-phase (stream-water) flow with heat addition,” AICHE Symp. Ser, Vol. 64, pp. 54-66
    Ismail, K. A. R., and Adogderah, M. M., 1998, “Performance of a Heat Pipe Solar Collector,” Journal of Solar Energy Engineering, Vol.120, pp.51-59.
    Ismail, K. A. R., and Adogderah, M. M., 1998, “Performance of a Heat Pipe Solar Collector,” Journal of Solar Energy Engineering, Vol.120, pp.51-59.
    Kasturi, G., & Stepanek, J. B., 1972, “Two Phase Flow-II. Parameters for Void Fraction and Pressure Drop Correlations,” Chemical Engineering Science, Vol. 27, pp. 1881-1891
    Kasturi, G., & Stepanek, J. B., 1972, “Two Phase Flow-II. Parameters for Void Fraction and Pressure Drop Correlations,” Chemical Engineering Science, Vol. 27, pp. 1881-1891
    Kline, S. J., 1985, “The Purposes of Uncertainty Analysis,” Transaction of ASME, Vol. 107, pp. 153-160
    Koizumi, H., & Yokohama, K., 1980, “Characteristics of Refrigerant Flow in A Capillary Tube,” ASHRAE. Transaction Part 2. 86, pp. 19-27
    Kuo, C. S., & Wang, C. C., 1996, “In-Tube Evaporation of HCFC-22 in a 9.52 mm Micro-Fin/Smooth Tube,” International Journal of Heat and Mass Transfer, Vol. 39, No. 12, pp. 2559-2569
    Kuzman, 1976, Handbook of Thermodynamic Tables and Charts, McGraw Hill, pp. 61.
    Lange,1967, Handbook of Chemistry, Revised 10th edition, McGraw Hill , pp. 1458.
    Levy, S., 1960, “Steam Slip-Theoretical Prediction from Momentum Model,” Journal of Heat Transfer, Vol. 82, No. 2, pp. 113-124
    Levy, S., 1966, “Prediction of Two Phase Annular Flow with Liquid Entrainment,” International Journal of Heat and Mass Transfer, Vol. 9, No. 3, pp. 171-188
    Levy, S., 1966, “Prediction of Two Phase Annular Flow with Liquid Entrainment,” International Journal of Heat and Mass Transfer, Vol. 9, No. 3, pp. 171-188
    Lockhart, R. W., & Martinelli, R. C., 1949, “Proposed Correlation of Data for Isothermal Two-Phase Two-Component Flow in Pipes,” Chemical Engineering Prog. 45, pp. 39-48
    Lowry, B. & Kawaji, M., 1988, “Adiabatic Vertical Two-phase Flow in Narrow Flow Channels,” AIChE Symp. Ser. 84, pp.133-139.
    Manhane, J. M., Gregory, G. A., Aziz, K. A., 1974,”A Flow Pattern Map for Gas-Liquid Flow in Horizontal pipeline” Int. J. Multiphase Flow, 1, pp 537-553
    Manhane, J. M., Gregory, G. A., Aziz, K. A., 1974,”A Flow Pattern Map for Gas-Liquid Flow in Horizontal pipeline” Int. J. Multiphase Flow, 1, pp 537-553
    Martinelli, R. C., & Nelson, D. B., 1948, “Prediction of Pressure Drop during Forced Circulation 7Boiling of Water,” Transaction of ASME, Vol. 70, No. 6, pp. 695-702
    Martinelli, R. C., & Nelson, D. B., 1948, “Prediction of Pressure Drop during Forced Circulation 7Boiling of Water,” Transaction of ASME, Vol. 70, No. 6, pp. 695-702
    Moffat, R. J., 1985, “Using Uncertainty Analysis in The Planning of An Experiment,” Transaction of ASME, Vol. 107, pp. 173-178
    Oshinowo, Toks., & Charles, M. E., 1974, “Vertical Two-Phase Flow: Part II. Holdup and Pressure Drop,” Canadian Journal of Chemical Engineering, Vol. 52, pp. 438-448.
    Peterson, G. P., 1988,”Investigation of Miniature Heat Pipes,” Final report, Wright Patterson AFB, Contract No. F33615-86-C-2733, Task 9. Quoted in Peterson[1992].
    Peterson, G. P., 1992,”Overview of Micro Heat Pipe Research and Development,” Applied Mechanical Review, Vol.45, pp.175-189.
    Peterson, G. P.,1998, Handbook of Heat Transfer, third edition, editors: Rohsenow, W. M. et al., McGraw Hill, Chapter 12, pp. 12.1-12.20.
    Peterson, G. P.,1998, Handbook of Heat Transfer, third edition, editors: Rohsenow, W. M. et al., McGraw Hill, Chapter 12, pp. 12.1-12.20.
    Rank, F. J., and Wayner, P. C. Jr., 1979, “an Evaporating Ethanol Meniscus: Part Ⅰ, Experimental Studies,” Journal of Heat Transfer, Vol.101, pp.55-58.
    Richardson, B. L., 1958, “Some Problems in Horizontal Two-phase Two-component Flow,” Argonne National Lab. Report ANL-5949.
    Richardson, B. L., 1958, “Some Problems in Horizontal Two-phase Two-component Flow,” Argonne National Lab. Report ANL-5949.
    Shah, M. M., 1979, “A General Correlation For Heat Transfer During Film Condensation Inside Pipes, “ International Journal of Heat and Mass Transfer, Vol.22, pp. 546-556
    Shah, M. M., 1979, “A General Correlation For Heat Transfer During Film Condensation Inside Pipes, “ International Journal of Heat and Mass Transfer, Vol.22, pp. 546-556
    Taitel, Y. & Dukler, A. E., 1976, “A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas-Liquid Flow,” AIChE Journal, Vol. 22, No. 1, pp. 47-55
    Taitel, Y., 1990, “Flow Pattern Transition in Two Phase Flow,” Paper presented at 9th Int. Heat Transfer Conference, Jerusalem.
    Tien, C. L., 1975, “Fluid Mechanics of Heat Pipes,” Annual Review of Fluid Mechanics, pp.167-185.
    Triplett, K.A. et al., 1999, “Gas-liquid Two Phase Flow in Microchannels Part I: Two Phase Flow Pattern,” International Journal Multiphase Flow Vol. 25, pp. 377-394
    Troniewski, L. & Ulbrich, R., 1984, “Two-phase Gas-liquid Flow in Rectangular Channels,” Chem. Engng Sci. 39, pp.751-765.
    Troniewski, L. & Ulbrich, R., 1984, “Two-phase Gas-liquid Flow in Rectangular Channels,” Chem. Engng Sci. 39, pp.751-765.
    Troniewski, L. & Ulbrich, R., 1984, “Two-phase Gas-liquid Flow in Rectangular Channels,” Chem. Engng Sci. 39, pp.751-765.
    Wang, C. C., Chiang C. S., Lin, S. P., Lu, D. C., 1997b,”Two-Phase Flow Pattern for R-134a Inside a 6.5-mm (0.25-in.) Smooth Tube,” ASHRAE Symp. Ser, Vol. 10, No. 2, pp. 395-405
    Wang, C. C., Chiang C. S., Lin, S. P., Lu, D. C., 1997b,”Two-Phase Flow Pattern for R-134a Inside a 6.5-mm (0.25-in.) Smooth Tube,” ASHRAE Symp. Ser, Vol. 10, No. 2, pp. 395-405
    Weisman, J., Kang, S, Y., 1981, “Flow Pattern Transition in Vertical and Upwardly Inclined Lines,” International Journal Multiphase Flow 7, pp. 271-291
    Weisman, J., Kang, S, Y., 1981, “Flow Pattern Transition in Vertical and Upwardly Inclined Lines,” International Journal Multiphase Flow 7, pp. 271-291
    孫即愚等,1994,熱管節能產品研究開發計畫八十三年度期末報告,經濟部能源委員會編印。
    黃文雄,1978,太陽能之應用及理論。
    謝鎮洲,1998,水-空氣及冷媒R-134a在微小管內兩相流之流譜分析,中央大學機械系碩士論文。

    QR CODE
    :::