跳到主要內容

簡易檢索 / 詳目顯示

研究生: 徐仲豪
Zhong-Hao Xu
論文名稱: 添加強塑劑對CFB副產石灰-水淬爐石粉膠結系統工作性影響之研究
指導教授: 李釗
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 160
中文關鍵詞: CFB 副產石灰水淬爐石粉強塑劑
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 循環式流體化床鍋爐(Circulating Fluidized Bed Boiler,簡稱 CFB),以
    燃燒石油焦來發電,為避免燃燒高含硫量之燃料產生硫氧化物之過量排
    放,故混合石灰石進行脫硫,其製程所產生之工業副產物,即為 CFB 副
    產石灰。
    本研究係添加三種不同強塑劑於 CFB 副產石灰-水淬爐石-水泥粉系統
    中,對水泥漿進行流度錐與迷你坍流度試驗,以尋求最佳之強塑劑與劑量。
    後續將此強塑劑應用於砂漿及混凝土,以了解強塑劑對於此一膠結系統中
    所能提供的工作性。另外為了改善凝結時間的問題,導入鹼活化系統於此類
    系統中。
    研究結果顯示,於水泥漿試驗中添加三種不同強塑劑於 CFB 副產石
    灰-水淬爐石粉系統,均能有效提升工作性,依各強塑劑的組成不同對此一
    系統的飽和點均不相同。三種強塑劑中以高分子聚合羧酸所提供之工作性
    最好,劑量在 0.55%時即達到飽和效果。後續添加高分子聚合羧酸 0.55%
    於砂漿與混凝土進行試驗,試驗結果顯示 CFB 副產石灰-水淬爐石粉系統
    添加高分子聚合羧酸能有效提升工作性,其工作性趨近於 OPC 組。添加
    鹼活化能有效改善凝結時間之問題,並提升早期之抗壓強度。


    Circulating Fluidized Bed (CFB) Boiler is a means of energygenerating
    process by burning petroleum coke. In order to avoid blazed petroleum coke with
    high sulfur content from emitting overdosed sulfur dioxide, limestone is
    introduced in the boiler for desulfuration. The residue collected from the boiler is
    called CFB Byproduct Lime.
    In this study, three different superplasticizers added to CFB byproduct lime
    - granulated blast furnace slag system, the proposed a technique to find the
    optimal dosage of superplasticizer with the flowing-slump and mini-slump test.
    Follow-up applied to mortar and concrete, in order to understand the
    superplasticizer for this system can provide workability. Furthermore, in order to
    improve the problem of setting time, the introduction of an alkaline-activated
    systems to such systems.
    The results show a superplasticizer added three different paste test in CFB
    byproduct lime - granulated blast furnace slag system can effectively enhance the
    work of, according to the composition of each superplasticizer a different
    saturation point of this system are not the same. Three superplasticizer plasticizers
    to the polycarboxyic acid sodium salt by the work of the best acid dose when
    0.55% is reached saturation effect. Adding subsequent high polymer acid 0.55%
    in mortar and concrete test, the test results show CFB byproduct lime - granulated
    blast furnace slag acid polymer powder added to the system can effectively
    enhance the work of its working group of close to OPC.

    圖目錄 I 表目錄 VII 第一章、緒論 1 1-1 研究動機 1 1-2 研究目的 2 1-3 研究內容 2 第二章、文獻回顧 4 2-1 循環式流體化床鍋爐技術 4 2-1-1 循環式流體化床鍋爐(Circulating Fluidized Bed Boiler) 4 2-1-2 CFB 副產石灰種類 6 2-1-3 循環式流體化床脫硫原理 7 2-2 鹼激發處理技術 9 2-2-1 鹼激發膠結材 9 2-2-2 激發劑種類 11 2-2-3 無機聚合物 16 2-2-3-1 無機聚合物之反應機理 16 2-2-3-2 無機聚合物之組成 17 2-2-3-3無機聚合物之結構 20 2-2-4 鹼激發爐石水泥 22 2-3 CFB 副產石灰及石膏之反應機理與特性 23 2-3-1 石膏之反應 23 2-3-2 副產石灰之反應機理 26 2-4 卜作嵐材料之反應 27 2-5 化學摻料 28 2-5-1 強塑劑之定義 28 2-5-2 強塑劑之分類 29 2-6 新拌混凝土 30 2-6-1 工作性 30 2-6-1-1 工作性定義 30 2-6-1-2 影響工作性因素 31 2-6-3 CFB 副產石灰對於新拌性質之影響 32 第三章、試驗計畫 37 3-1 試驗規劃 37 3-2 試驗材料 39 3-3 試驗儀器與設備 42 3-4 試驗方法 49 3-4-1 流度試驗 49 3-4-2 迷你坍流度試驗 50 3-4-3 飽和點試驗 51 3-4-4 凝結時間試驗 51 3-4-5 流度台試驗 52 3-4-6 混凝土坍度試驗 53 3-4-7 混凝土坍流度試驗 55 3-4-8 單位重試驗 55 3-4-9 混凝土凝結時間試驗 57 3-5 強塑劑用量計算 58 3-6 鹼激發劑用量計算 59 3-7 混凝土配合設計 60 第四章、實驗結果與討論 67 4-1 漿體試驗 67 4-1-1 流度試驗 (ASTM c939) 67 4-1-2 坍流度試驗 75 4-1-3 飽和點試驗 82 4-1-4 漿體凝結時間試驗 (CNS 786) 91 4-1-5 漿體抗壓強度試驗 (CNS 1010) 93 4-2 砂漿試驗 95 4-2-1 流度台試驗 (CNS 1012) 95 4-2-2 坍流度試驗 96 4-2-3 砂漿抗壓強度試驗 (CNS 1010) 97 4-3 混凝土試驗 100 4-3-1 坍度試驗 (CNS 1176) 100 4-3-2 坍流度試驗 (CNS 14842) 102 4-3-3 單位重試驗 (CNS 11151) 103 4-3-4 凝結時間試驗 (CNS 14220) 105 4-3-5 混凝土抗壓強度試驗 (CNS 1232) 107 4-4 凝結時間改善 111 4-4-1 砂漿試驗 111 4-4-1-1 流度台試驗 (CNS 1012) 111 4-4-1-2 坍流度試驗 112 4-4-1-3 砂漿抗壓強度 (CNS 1010) 113 4-4-2 混凝土試驗 116 4-4-2-1 坍度試驗 (CNS 1176) 116 4-4-2-2 坍流度試驗 (CNS 14842) 118 4-4-2-3 單位重試驗 (CNS 11151) 119 4-4-2-4 凝結時間試驗 (CNS 14220) 121 4-4-2-5 混凝土抗壓強度試驗 (CNS 1232) 122 第五章、結論與建議 126 5-1 結論 126 5-2 建議 129 參考文獻 130

    1. 蕭定群,「副產石灰配合再生粒料製作無水泥混凝土可行性評估」,國立
    中央大學土木工程研究所碩士學位論文,2010。
    2. 陳冠宇,「不同型態之 CFB 副產石灰應用於混凝土之研究」,國立中央
    大學土木工程研究所碩士學位論文,2011。
    3. 吳國愷,「CFB 副產石灰應用於水庫淤泥土材料之初步研究」,國立成功
    大學土木工程研究所碩士論文,2009 。
    4. 張士晉,「摻 CFB 副產石灰之鹼激發飛灰膠凝材料工程性質之研究」,
    國立成功大學土木工程研究所碩士論文,2009。
    5. 王昱智,「副產石灰為混凝土膠結材料之配比與特性研究」,國立中央大
    學土木工程研究所碩士學位論文,2008。
    6. 汪翊鐙,「副產石灰摻配爐石粉製作混凝土成效研究」,國立中央大學土
    木工程研究所碩士學位論文,2009。
    7. 黃暉淇,「循環式流化床燃燒飛灰運用於水泥質複合材料之機裡與特性研
    究」,國立臺灣海洋大學材料工程研究所碩士學位論文,2008。
    8. 「台塑級配料-副產石灰」,台塑石化股份有限公司。
    9. 副產品「混合石膏及副產石灰」再利用技術及應用推廣規範評估報告,
    台塑石化股份公司,2006。
    10. Jackson, N.M., Mack, R., Schultz, S. and Malek, M.“Pavement Subgrade
    Stabilization and Construction Using Bed and Fly Ash.” World of Coal Ash
    (WOCA), 7-10.,2007.
    11. 吳志賢,「含矽質廢棄物之無機聚合物」,國立成功大學土木工程研究所
    博士論文,2009。
    12. Xu, H., Van Deventer, J. S. J.,“ The geopolymerisation of alumino silicate
    minerals.” International Journal of Mineral Processing, 59, 247266, 2000.
    13. Krizana, D., Zivanovic, B.,“ Effects of dosage nd modulus of water glass on
    early hydration of alkali-slag cements.” Cement and Concrect Research,
    32,1181-1188, 2002.
    14. Wang, S. D., Scrivener, K. L., and Pratt, P. L., “Factors affecting the strength
    of alkali-activated slag.” Cement and Concrete Research, 24 (6), 1033-1043,
    1994.
    15. Lecomte, I.,Henrist, C., Liegeois, M., Maseri ,F., Rulmont, A., Cloots, R.,
    “(Micro)-structural comparison between geopolymers alkali-slag cement and
    Portland cement.” Journal of the European Ceramic Society, 26, 3789-3997,
    2006.
    16. 徐彬,「固態檢組份礦渣礦渣水泥的研製及其水化機理和性能的研究」,
    國立清華大學博士學位論文,1995。
    17. Davidoits, J., “Mineral polymer and methods of mking them.” USA Patent
    4.349, 386, 1982.
    18. Palomo, A., Grutect , M. W., Blanco, M. T.,“Alkali-activated fly ashes A
    cement for the future.” Cement and Concrete Research, 29, 13231329, 1999.
    19. Wang, S. D., Pu, X. C., Scrivener, K. L., Pratt, P. L., “Alkali-activated
    cemcrent and concrete.” A review of properties and problems ,Advances in
    Cement Research, 7(27), 93-102, 1995.
    20. Fernandez-Jimenez, A., Palomo, J. G., Puertas, F.,“ Alkali-activated Slag
    Mortars Mechanical Strength Behaviour.” Cement and Concrete Research, 29,
    1313-1321, 1999.
    21. Davidoits, J.,Global“ Warming Impact on the Cement and Aggregates
    Industries.” World Resource Review, 6(2), 263- 278, 1994.
    22. Xu, H., Van Deventer, J. S. J.,Lukey, G. C.,“Effect of alkali metals on the
    preferential geopolymeization of stilbite/kaolinite mixtures.” Industrial and
    Engineering Chemistry Research, 40, 3749- 3756, 2001.
    23. Shi, C.,Day, R. L., “Some Factors Affeting Early Hydration of AlkaliSlag
    Cements.” Cement and Concrete Research, 26 439-417, 1996.
    24. C. Shi﹐R. L. Day“A calorimetric study of early hydration of alkali slag
    cement.” Cement and Concrete Research 25(6)﹐1333-1346﹐1995.
    25. C. Shi﹐R. L. Day,“Some factors affecting early hydration of alkali slag
    cement.”Cement and Concrete Research 26(3)﹐439-447﹐1996.
    26. S. Song﹐H. M. Jennings,“Pore solution chemistry of alkali-activated ground
    granulated blast-furnace slag.”Cement and Concrete Research, 29(2)﹐159
    170﹐1999.
    27. 馬鴻文、楊靜、任玉峰、凌發科,礦物聚合材料: 研究現況與發展前景,
    地學前緣,第 9 卷第 4 期,397-407,2002。
    28. A. Palomo﹐M. W. Grutzeck and M. T. Blanco﹐“Alkali-activated fly ashes,a
    cement for the future ﹐”Cement and Concrete Research 29(8)﹐1323-1329﹐
    1999.
    29. 蕭遠智,「鹼活化電弧爐還碴之水化反應特性」,國立中央大學土木工程
    研究所碩士學位論文,2002。
    30. 黃慶慶,「鹼活化電弧爐還碴製作混凝土可行性研究」,國立中央大學土
    木工程研究所碩士學位論文,2008。
    31. Manjit Singh, Mridul Garg, “Calcium sulfate hemihydrate activated low heat
    sulfate resistant cement, ”Construction and Building Materials 16,181-186,
    2002.
    32. C. S. Poon., S. C. Kou., . Lam., Z. S. Lin.,“Activation of fly ash /cement
    systems using calcium sulfate anhydrite (CaSO4).” Cement and Concrete
    Research, 31, 873-881, 2001.
    33. H. G. Midgley., K. Petifer., “The misostructure of hydrated supersulphated
    cement.” Cement and Concrete Research, 1, 101-104, 1971.
    34. L. Yongde﹐Sun Yao,“Preliminary study on combined-alkali-slag paste
    materials.”Cement and Concrete Research 30(6)﹐963-966﹐2000.
    35. T. Bakharev﹐J. G. Sanjayan﹐ Y. -B. Cheng,“Effect of elevated temperature
    curing on properties of alkali-activated slag concrete.” Cement and Concrete
    Research 29(10)﹐1619-1625, 1999.
    36. C. Shi﹐“Strength﹐pore structure and permeability of alkali activated slag
    mortars.”Cement and Concrete Research, 26(12), 17891799﹐1996.
    37. 鄭大偉,「無機聚合技術的發展應用及回顧」,鑛冶 54/1,2010。
    38. R. Terzano, M. Spagnuolo, L. Medicu, B. Vekemans, L. Vincze, K. Janssens,
    P. Ruggiero,“Copper stabilization by zeolite synthesis in polluted soils treated
    with coal fly ash.” Environmental Science and Technology, 39, 6280-6287,
    2005.
    39. J.G.S. Van Jaarsveld, J. S. J. van Deventer and L. Lorenzen, “Factors affecting
    the immobilization of metals in geopolymerized flyash.” Metallurgical and
    Materials Transactions B: Process Metallurgy and Materials Processing
    Science,. 29, 283-291, 1998.
    40. Young, J. F. , Mindess, S. and Darwin, D., Concrete, Prentice-Hall, Inc., Upper
    Saddle River, New Jersey, U.S.A., 2002.
    41. Sievert, T.,Wolter, A., and Singh, N.B.,“ Hydration of anhydrite of
    gypsum(CaSO4.Ⅱ) in a ball mill,”Cement and Concrete Research, 35, 623
    630, 2005.
    42. 支俊秉、張旭,「水泥中 SO3 對水泥性能的影響」,水泥工程,第二期,
    第 21-24 頁,2006。
    43. Sheng, G., Li,Q., Zhai, J., and Li, F. , “Self-cementitious properties of fly ashes
    from CFBC boilers co-firing coal and highsulphur petroleum coke,” Cement
    and Concrete Research, 37, 871-876. , 2007.
    44.楊舒予,「 以 CFB 副產石灰作為水淬爐石粉激發劑之可行性探討」,國
    立中央大學土木工程研究所碩士學位論文,2011。
    45.吳俊澔,「 抑制副產石灰摻合水淬爐石粉的膨脹及緩凝行為之探討」,
    國立中央大學土木工程研究所碩士學位論文,2011。

    QR CODE
    :::