跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔣崇平
Chung-Ping Chiang
論文名稱: 時間相依一致性指標-三種方法之比較
Time-dependent C-index : A Comparison of Three Methods
指導教授: 曾議寬
Yi-Kuan Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 55
中文關鍵詞: 1.比例風險模型2.聯合模型3.長期追蹤資料4.模型比較5.時間相依一致性指標
外文關鍵詞: 1.Cox model, 2.Joint model, 3.Longitudinal data, 4.Model comparison, 5.Time-dependent concordance
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的在於針對存活資料中含有的長期追蹤(Longitudinal) 性質的共變數(生物指標),並且伴隨著測量誤差的情形下去計算時間相依一致性指標(Time-dependent concordance)。我們進一步比較的三種方法可以依據基於模型(Model-based)與非基於模型分成兩類,基於模型中包含了聯合模型(Joint model) 補值法與鄰近點補值法(Nearest Neighbor Estimate),而目前存在的文獻中的非基於模型則是利用IPCW(Inverse of the probability of censoring weighted)來進行加權。本研究會比較此三種方法所估計的時間相依一致性指標,在各種不同測量誤差、測量值缺失率、設限率及樣本數下的影響,最後以實際愛滋病的資料做分析,展示三種方法下的結果。


    The purpose of this study is to calculate the Time-dependent concordance for the Longitudinal covariance (biological index) contained in the survival data, and to calculate the time-dependent C-index with the measurement error. The three methods we further compared can be divided into two categories based on the Model-based and non-model-based. The model-based method includes the Joint model compensation method and the Nearest Neighbor Estimate. The non-model-based methods in the existing literature use IPCW (Inverse of the probability of censoring weighted) for weighting. This study will compare the time-dependent C-index estimated by these three methods, and the impact of various measurement errors, missing measurement rates, censoring rates, and sample sizes. Finally, the actual AIDS data will be used to analyze the three methods.

    摘要 i Abstract ii 致謝 iii 圖目錄 iv 表目錄 v 第一章 緒論 1 1.1 一致性指標 2 1.2 基於模型下的一致性指標 2 1.3 非基於模型下的一致性指標 5 第二章 統計方法 6 2.1 基於模型之時間相依一致性指標及補值法 7 2.2 非基於模型之時間相依一致性指標 14 第三章 模擬研究 16 3.1 在不同測量誤差下時間相依一致性指標之比較 18 3.2 在不同測量值缺失率下時間相依一致性指標之比較 23 3.3 在不同設限率下時間相依一致性指標之比較 27 3.4 在不同樣本數下時間相依一致性指標之比較 29 第四章 資料分析 32 4.1 愛滋病資料介紹 32 4.2 時間相依一致性指標模型 33 第五章 結論 37 參考文獻 38 附錄A.1 I/D定義下之AUC與一致性指標推導 42

    Bennett, S. (1983). Analysis of Survival Data by the Proportional Odds Model. Statistics in Medicine, 2, 273–277.

    Box, G., and Cox, D. (1964). An Analysis of Transformations. Journal of the Royal Statistical Society Series B, 26, 211-252.

    Cheng, F. (2017). Asymptotic Properties of Hazard Rate Estimator in Censored Linear Regression. Sankhya A, 79, 1–12.

    Chiou, S. H., Kang, S. and Yan, J. (2014). Fitting Accelerated Failure Time Models in Routine Survival Analysis with R Package aftgee. Journal of Statistical Software, 61, 1–23.

    Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistics Society series B, 34, 187-220

    Cox, D. R. (1975). Partial likelihood. Biometrics, 62, 269-276

    Heagerty, P. J., Saha-Chaudhuri, P. and Saha-Chaudhuri, M. P. (2012). Package ‘risksetROC’: riskset ROC curve estimation from censored survival data.

    Heagerty, P.J. and Zheng, Y. (2005). Survival Model Predictive Accuracy and ROC Curves. Biometrika, 61, 92-105.

    Hsieh, F, Tseng, Y.K. and Wang, (2006). Joint Modeling of Survival and Longitudinal Data: Likelihood Approach Revisited. Biometrics, 62, 1037–1043.

    James, M.R. and Dianne, M.f. (2000). Correcting for Noncompliance and Dependent Censoring in an AIDS Clinical Trial with Inverse Probability of Censoring Weighted (IPCW) Log-Rank Tests. Biometrics, 56, 779–788.

    Jones, M. C. (1990). The performance of kernel density functions in kernel distribution function estimation. Statistics and Probability Letter, 9, 129–132.

    Jones, M. C. and Sheather, S. J. (1991). Using non-statistic terms to advantage in kernel-based estimation of integrated squared density derivatives. Statistics and Probability Letter, 11, 511–514.

    Kamarudin, A. N., Cox, T. and Kolamunnage-Dona, R. (2017). Time-dependent ROC curve analysis in medical research: current methods and applications. BMC Medical Research Methodology, 17, 53.

    Lin, Y. H. (2017). Model-base Time dependent AUC and Predictive Accuracy. Graduate Institute of Statistics, National Central University, 桃園.

    Martinussen, T. and Scheike, T. H. (2006). Dynamic Regression Models for Survival Data, New York: Springer.

    MuKller, H. G. and Wang, J. L. (1994). Hazard rate estimation under random censoring with varying kernels and bandwidths. Biometrics, 50, 61–76.

    Thomas, A, Gerds and Michael, W. K. (2012). Estimating a time-dependent concordance index for survival prediction models with covariate dependent censoring. Statistics in Medicine, 116, 2173-2184.

    Tseng, Y. K., Wang, J. L. and Hsieh, F. (2005). Joint modeling of accelerated failure time and longitudinal data. Biometrika, 92, 587-603.

    Tseng, Y. K. and Shu, K. N. (2011). Efficient Estimation for a Semiparametric Extended Hazards Model. Communications in Statistics—Simulation and Computation, 40, 258-273.

    Tseng, Y. K., Wang, J. L., Su, Y. R., and Mao, M. (2015). An extended hazard model with longitudinal covariates. Biometrika, 102, 135-150.

    Tsiatis, A. A. and Davidian, M. (2001). A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error. Biometrika, 88, 447-458.

    Wei, L. J. (1992). The accelerated failure time model: A useful alternative to the cox regression model in survival analysis. Statistics in Medicine, 11, 1871–1879.

    Wulfsohn, M. S. and Tsiatis, A. A. (1997). A joint model for survival and longitudinal data measured with error. Biometrics, 53, 330-339.

    Xu, C., Hadjipantelis, P. Z. and Wang, J. L. (2020). Semi-parametric joint modeling of survival and longitudinal data: The R Package JSM. Journal of Statistical Software, 93, 1-29.

    Zeng, D. and Lin, D. Y. (2007). Efficient estimation for the accelerated failure time model. Journal of American Statistical Association, 102, 1387–1396.

    林威廷(2021)。風險回歸模型下時間相依ROC曲線。國立中央大學統計研究所碩士論文。

    QR CODE
    :::