| 研究生: |
黃勤能 Ching-neng Huang |
|---|---|
| 論文名稱: |
氧化鋁模板法製備鎳-鈷合金奈米線陣列之研究 Electrochemical synthesis of Ni-Co nanowire arrays in anodic alumina oxide template |
| 指導教授: |
鄭紹良
Shao-liang Cheng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 奈米線 、電鍍 、氧化鋁模板 |
| 外文關鍵詞: | anodic alumina oxide, nanowire |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,Co-Ni薄膜和微粒被發現在感測器、先進微米電磁鐵以及磁性記憶體等方面的有相當大的應用潛力。然而在不同ㄧ維長度以及成分比例之鎳-鈷合金奈米線研究方面還沒有被深入探討。為了以低廉的成本快速製作大範圍且孔徑可控制的Co-Ni合金奈米線陣列,我們採用了ㄧ種有效且經濟的技術-氧化鋁 (AAO)模板法配合電鍍製程技術取代傳統的半導體微影技術。
在本研究中我們成功的透過控制參數的改變製備了具有二維有序孔洞結構的氧化鋁模板和大範圍整齊均ㄧ且具有不同鎳與鈷組成比例的Co-Ni合金奈米線陣列。氧化鋁模板的孔徑大小可控制調變在20-100 nm以及厚度在40-130 μm之間。在以直流電電鍍製程製備合金奈米線並移除氧化鋁模板後,我們成功的製作了高密度且具有不同組成(Co:Ni=1:9, Co:Ni=1:1, Co:Ni=9:1)的Co-Ni合金奈米線。從能量散佈分析儀的線掃描分析中顯示了這些合金奈米線完全是由鈷與鎳組成,並且在不同的樣品中會具有所需的鎳與鈷組成。在穿透式電子顯微鏡以及選區繞射的分析中,我們發現這三種組成的奈米線均為單晶結構且為六方晶系。Co-Ni合金奈米線的成長方向經鑑定後分別為:樣品A(Co:Ni=1:9)為[1 11],樣品B(Co:Ni=1:1)為[ 41],樣品C(Co:Ni=9:1)為 [ 41]。此外,實驗中我們也發現Co-Ni奈米線對外加磁廠的變化有很明顯的感應。本研究中我們利用了特定的外加磁場方向,可控制Co-Ni奈米線在矽基材上製備出具有二維方向排列合金奈米線陣列的圖形。
Recently, Co-Ni alloy thin film and particles have already been found their potential applications in sensors, advanced micoactuators, and magnetic recording medias. However, the synthesis and applications of one-dimensional (1-D) Co-Ni alloy nanowires with different contents have not been intensively studied. To fabricate large-area size-tunable Co-Ni alloy nanowire array at low-cost, an effective and economical technique-anodic alumina oxide (AAO) template-assisted electrodeposition process is one of the most promising schemes to replace the conventional lithography methods.
In the study, we demonstrated that the AAO template with 2-D periodic nanopore structure and large-scale well-aligned Co-Ni alloy nanowire array with different composition ratio of Co and Ni were successfully fabricated under controlled synthesizing conditions. The pore diameter and lengths of the as-prepared AAO template can be tuned from 20-100 nm and 40-130 μm, respectively. After DC electrodeposition and subsequent removing the AAO templates, high-density, well-aligned Co-Ni alloy nanowires with different concentration ratio of Co to Ni(Co:Ni=1:9, Co:Ni=1:1, Co:Ni=9:1) were were successfully synthesizied. From the EDS line-scan profiles analysis, it is revealed that alloy nanowires were entirely composed of Co and Ni, and uniforem distributions of Co anf Ni throughout these nanowires. Based on the TEM and SAED analysis, it is found that the three sets of Co-Nialloy nanowires were all single crystalline, and these single crystalline Co-Ni nanowire possess a HCP structure. The growth direction of the Co-Ni alloy nanowires of samples A(Co:Ni=1:9), B(Co:Ni=1:1), and C(Co:Ni=9:1) were identified to be along the [1 11], [ 41], and [ 41] directions, repectively. On the other Hand, the Co-Ni nanowires were found to be very sensitive to the magnetic. In this study, we experimentally demonstrated that by applying external magnetic fileds, these Co-Ni nanowires can be controlled to align along the directions of applied magnetic filed and assemble into a 2-D ordered pattern on Si substrate.
[1] J. G. Zhu, Y. Zheng and G. A. Prinz, “Ultrahigh density vertical magnetoresistive random access memory”, J. Appl. Phys. 87 (2000) 6668-6673.
[2] M. Zheng, G. Li, X. Zhang, S. Huang, Y. Lei and L. Zhang, “Fabrication and structural characterization of large-scale uniform SnO2 nanowire array embedded in anodic alumina membrane”, Chem. Mater. 13 (2001) 3859-3861.
[3] X. Y. Zhang, L. D. Zhang, W. Chen, G. W. Meng, M. J. Zheng, L. X. Zhao and F. Phillipp, “Electrochemical fabrication of highly ordered semiconductor and metallic nanowire arrays”, Chem. Mater. 13 (2001) 2511-2515.
[4] S. Miserendino, J. Yoo1, A. Cassell and Y. C. Tai1, “Electrochemical characterization of parylene-embedded carbon nanotube nanoelectrode arrays”, Nanotechnology 17 (2006) S23-S28.
[5] M. S. Sander, M. J. Cote, W. Gu, B. M. Kile and C. P. Tripp, “Template-assisted fabrication of dense aligned arrays of Titania nanotubes with well-controlled dimensions on substrates”, Adv. Mater. 16 (2004) 2052-2057.
[6] K. Wegner, P. Piseri, H. V. Tafreshi and P. Milani, “Cluster beam deposition: a tool for nanoscale science and technology”, J. Phys. D: Appl. Phys. 39 (2006) R439-R459.
[7] J. Fang, X. Ma, H. Cai, X. Song and B. Ding, “Nanoparticle-aggregated 3D monocrystalline gold dendritic nanostructures”, Nanotechnology 17 (2006) 5841-5845.
[8] J. Chen and L.M. Wu, “Syntheses and characterizations of Bismuth nanofilms and nanorhombuses by thestructure-controlling solventless method”, Inor. Chem. 46 (2007) 586-591.
[9] K. L. Hobbs, P. R. Larson, G. D. Lian, J. C. Keay and M. B. Johnson, “Fabrication of nanoring arrays by sputter redeposition using porous alumina templates”, Nano Letter 4 (2004) 167-171.
[10] T. Y. Zhang, W. Zhao and J. C. Cao, “Optical response in a quantum dot superlattice nanoring under a lateral electric field”, Phys. Rev. B. 72 (2005) 165310-1-6.
[11] F. Sun, J. C. Yu and X. Wang, “Construction of size-controllable hierarchical nanoporous TiO2 ring arrays and their modifications”, Chem. Mater. 18 (2006) 3774-3779.
[12] M. Nishizawa, K. Mukai, S. Kuwabata, C. R. Martin and H. Yoneyam, “Template synthesis of polypyrrole-coated spinel LiMn2O4 nanotubules and their properties as cathode active materials for Lithium batteries”, J. Electro. Soc. 144 (1997) 1923-1927.
[13] K. Nielsch, R. B. Wehrspohn, J. Barthel, J. Kirschner, U. Gösele, S. F. Fischer and H. Kronmüller, “Hexagonally ordered 100 nm period nickel nanowire arrays ”, Appl. Phys. Lett. 79 (2001) 1360-1362.
[14] D. AIMawlawi, N. Coombs and M. Moskovits, “Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size”, J. Appl. Phys. 70 (1991) 4421-4425.
[15] A. Birner, U. Grüning, S. Ottow, A. Schneider and F. Müller, V. Lehmann, H. Föll, and U. Gösele, “Macroporous silicon: a two-dimensional photonic bandgap material suitable for the near-infrared spectral range”, Phys. Stat. Sol. (a). 165 (1998) 111-117.
[16] S. B. Tang, A. Tang, S. B. Tang and M. O. Lai, “Electrochemical studies of low-temperature processed nano-crystalline LiMn2O4 thin film cathode at 55 ◦C”, J. Power Sources. 164 (2007) 372-378.
[17] H. Li, T. Xu, C. Wang, J. Chen, H. Zhou and H. Liu, “Annealing effect on the structure, mechanical and tribological properties of hydrogenated diamond-like carbon films”, Thin Solid Films 515 (2006) 2153-2160.
[18] T. M. Chen, F. M. Pan, J. Y. Hung, L. Chang, S. C. Wu and C. F. Chena, “Amorphous carbon coated silicon nanotips fabricated by MPCVD using anodic aluminum oxide as the template”, J. Electro. Soc. 154 (2007) D215-D219.
[19] X. W. Wang, G. T. Fei, L. Chen, X. J. Xu and L. D. Zhang, “Orientation-controllable growth of Ni nanowire arrays with different diameters”, Elect. Solid-State. Lett. 10 (2007) E1-E3.
[20] S. Zhao, H. Roberge, A. Yelon and T. Veres, “New application of AAO template: a mold for nanoring and nanocone arrays”, J. Am. Chem. Soc. 128 (2006) 12352-12353.
[21] J. Zou, X. Qi, L. Tan and B. J. H. Stadler, ”Large-scale ordering of porous Si using anodic aluminum oxide grown by directed self-assembly”, Appl. Phys. Lett. 89 (2006) 093106-093109.
[22] Y. Zhao, M. Chen, X. Liu, T. Xu and W. Liu, “Electrochemical synthesis of polydiphenylamine nanofibrils through AAO template”, Materials Chemistry and Physics 91 (2005) 518-523.
[23] H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina”, Science 268 (1995) 1466-1468.
[24] G. Patermarakis and K. Moussoutzanis, “Electrochemical kinetic study on the growth of porous anodic film on aluminium”, Electrochimica acta. 40 (1995) 699-708.
[25] H. Pan, J. Lin, Y. Feng and H. Gao, “Electrical-bridge model on the self-organized growth of nanopores in anodized aluminum oxide”, IEEE Transactions on Nanotechnology 3 (2004) 462-467.
[26] H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina”, Science 268 (1998) 1466-1468.
[27] H. Masuda , H. Yamada, M. Satoh and H. Asoh, "Highly ordered nanochannel-array architecture in anodic alumina", Appl. Phys. Lett. 71 (1997) 2770-2772.
[28] H . Masuda, H. Asoh , M. Watanabe, K. Nishio, M. Nakao and T. Tamamura, "Square and triangular nanohole array architectures in anodic alumina", Adv. Mater. 13 (2001) 189-192.
[29] Y. C. Kong and D. P. Yu, "Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach", Appl. Phys. Lett. 78 (2001) 407-409.
[30] A. A. Setlur and J. M. Lauerhaas,"A method for synthesizing large quantifies of carbon nanotubes and encapsulated copper nanowires", Appl. Phys. Lett. 69 1996 345-347.
[31] N. I. Kovtyukhova, T. E. Mallouk and T. S. Mayer, "Templated surface sol-gel synthesis of SiO2 nanotubes and SiO2-insulated metal nanowires", Adv. Mater. 15 (10) (2003) 780-785.
[32] B. I. Seo, U. A. Shaislamov, S. W. Kim, H. K. Kim, S. K. Hong and B. Yang, “Fabrication of electrode Pt nanotubes for semiconductor capacitors”, Physica E 37 (2007) 279–282.
[33] P. Aranda and J. M. Garcıa, "Porous membranes for the preparation of magnetic nanostructures", J. Magn. Magn. Mater. 249 (2002) 214-219.
[34] Y. Zhou, J. Huang, C. Shen and H. Li, "Synthesis of highly ordered LiNiO2 nanowire arrays in AAO templates and their structural properties", Materials Science and Engineering: A 335 (2002) 260-267.
[35] M. S. Gudiksen and J. Lincoln, "Growth of nanowire superlattice structures for nanoscale photonics and electronics", Nature 415 (2002) 617-620 .
[36] C. C. Chen, C. G. Kuo, J. H. Chen and C. G. Chao, “Nanoparticles of Pb-Bi eutectic nucleation and growth on alumina template”, J. J. Appl. Phys. 43 (2004) 8354-8359.
[37] X. Y. Yuan, T. Xie, G. S. Wu, Y. Lin, G. W. Meng and L. D. Zhang, "Fabrication of Ni-W-P nanowire arrays by electroless deposition and magnetic studies", Physica E 23 (2004) 75-80.
[38] . L. Prieto, M. S. Sander, M. S. Marti, R. Gronsky, T. Sands and A. M. Stacy, “Electrodeposition of ordered Bi2Te3 nanowire array”, J. Am. Chem. Soc. 123 (2001) 7160-7161.
[39] J. M. Garci, A. Asenjo, J. Velazquez, D. Garcia and M. Vazquez, “Magnetic behavior of an array of cobalt nanowires”, J. Appl. Phys. 85 (1999) 5480-5482.
[40] Y. G. Guo, L. J. Wan, C. F. Zhu, D. L. Yang, D. M. Chen and C. L. Bai, "Ordered Ni-Cu nanowire array with enhanced coercivity", Chem. Mater. 15 (2003) 664-667.
[41] H. Pan, B. Liu, J. Yi, C. Poh, S. Lim, J. Ding, Y. Feng,,C. H. A. Huan and J. Lin, "Growth of single-crystalline Ni and Co nanowires viaelectrochemical deposition and their magnetic properties", J. Phys. Chem. B 109 (2005) 3094-3098.
[42] H. Pan, H. Sun, C. Poh, Y. Feng and J. Lin, "Single-crystal growth of metallic nanowires with preferred orientation", Nanotechnology 16 (9) (2005) 1559-1564.
[43] X. W. Wang, G. T. Fei, X. J. Xu, Z. Jin and L. D. Zhang, "Size-dependent orientation growth of large-area ordered Ni nanowire arrays", J. Phys. Chem. B 109 (2005) 24326-24330.
[44] X. Y. Zhang, L. H. Xu, J. Y. Dai and H. L. W. Chan, “Fabrication and magnetic behavior of Co–Ni nanowire arrays with small diameters”, Physica B 353 (2004) 187-191.
[45] J. Guangbin, J. Cao, F. Zhang, G. Xu, S. Tang and B. Gu, Y. Du , “Structural and magnetic properties of electrochemically assembled Ni–Pb/Al2O3 nanostructures”, Sol. Sta.Comm. 136 (2005) 97-101.
[46] C. Z. Wang, G. W. Meng, Q. Q. Fang, X. S. Peng, Y. W. Wang, Q. Fang and L. D. Zhang, “Structure and magnetic property of Ni–Cu alloy nanowires electrodeposited into the pores of anodic alumina Membranes”, J. Phys. D: Appl. Phys, 35 (2002) 738-741.
[47] A. Saedi and M. Ghorbani , “Electrodeposition of Ni–Fe–Co alloy nanowire in modified AAO template”, Mater. Chem. Phys. 91 (2005) 417-423.
[48] I. Z. Rahman, A. Boboc, K. M. Razeeb and M. A. Rahman, “Analysis of magnetic interaction in Ni nanowire array grown using electrodeposition process”, J. Mag. Mag. Mater. 290 (2005) 246-249.
[49] H. Zeng, M. Zheng, R. Skomski and D. J. Sellmyer, “Magnetic properties of self-assembled Co nanowires of varying length and diameter”, J. Appl. Phys. 87 (2000) 4718-4720.
[50] D. J. Sellmyer, M. Zheng and R. Skomski, “Magnetism of Fe, Co and Ni nanowires in self-assembled arrays”, J. Phys.: Condens. Matter 13 (2001) R433-R460.
[51] R. Hertel, “Micromagnetic simulations of magnetostatically coupled Nickel nanowires”, J. Appl. Phys. 90 (2001) 5752-5758.
[52] R. Ferre and K. Ounadjela, “Magnetization process in nickel and cobalt electrodeposited nanowires”, Phys. Rev. B. 56 (1997) 66-75.
[53] X. W. Wang, G. T. Fei, P. Tong, X.J. Xu and L. D. Zhang, “Structure control and magnetic properties of electrodeposited Co nanowire”, Journal of Crystal Growth 300 (2007) 421-425.
[54] H. Cao, L. Wang, Y. Qiu, Q. Wu, G. Wang, L. Zhang and X. Liu, “Generation and growth Mechanism of metal (Fe,Co,Ni) nanotube array, Chemphyschem 7 (2006) 1500-1504.