| 研究生: |
黃志琪 Chih-Chi Huang |
|---|---|
| 論文名稱: |
以石英晶體微天平量測細懸浮微粒PM2.5質量濃度之可行性探討 A Feasibility Study of Monitoring PM2.5 using a Quartz Crystal Microbalance Sensor |
| 指導教授: |
蕭大智
Ta-Chih Hsiao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所在職專班 Executive Master of Environmental Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 石英晶體微天平 、微粒 |
| 外文關鍵詞: | quartz crystal microbalance, particles |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來許多研究報導指出,懸浮於環境中的微粒被人體吸入後可能對人體健康造成負面的影響,因此人們對於環境中懸浮微粒的質量濃度格外重視。本研究欲探討利用石英晶體微天平對於量測微量物質質量的精準度與靈敏度的優勢,評估運用於連續量測細懸浮微粒質量濃度之可行性,期望藉此幫助國人監測及評估環境中的空氣品質。本研究先透過選用合適的微粒類別及設計引流的方式,使空氣中的細懸浮微粒附著於壓電晶體的表面上;再透過控制環境濕度及氣流流速的方式,減少實驗過程中的干擾;最後,藉由不同的抽氣流量、引流口的角度及微粒之質量濃度等方式觀察微粒沉積於晶體過程中頻率的變化,藉此探討運用之可行性。
研究結果顯示石英晶體微天平有由低頻率往高頻率零點飄移的現象;並於抽氣流量0.5 LPM時,對頻率的變化影響比較小;且透過水平引流口的設計方式可使微粒無法經由重力沉降的方式持續進入引流道內;又其頻率的變化量與環境中細懸浮微粒質量濃度成正相關且具有1.8~3.6 μg/M3的量測能力。因此證實石英晶體微天平確實可做為量測空氣中細懸浮微粒質量濃度的量測元件;只要再經詳加地探討運用的操作限制後,即具有發展成為連續即時量測元件之潛力。
In recent years, a growing body of researches has reported that particulate matter could adversely affect human health; therefore people have paid more attention on the concentration of particulate matter in the environment. Of its accurate and sensible measurement of particulate matter, this study sheds light on the feasibility of using quartz crystal microbalance (hereafter QCM) to continuously detect the concentration of particulate matter. The application of QCM is expected to help monitor and evaluate the air quality.
In the beginning we attach the particulate matter to the surface of crystal by selecting the appropriate particle type and designing the method of drainage, and control environmental humidity and air flow rate to reduce the interference in the experimental process. We can therefore observe the change of the frequency of the particles depositing in crystal by differentiating the pumping flow rate, the angle of the drainage port and the mass concentration of the particles to explore the feasibility of the application.
The results show that the QCM exhibits zero drift from low to high frequency. When the pumping flow rate is 0.5 LPM, the influence is insignificant. The design of the drainage port can deter particles from continuing entry to the drainage channel by gravity. Also, the change of frequency is positively correlated with the concentration of particulate matter and the sensibility is 1.8~3.6 μg/M3.
Our results suggest that the QCM can be used as a sensing component to measure particulate matter, and potentially it could be developed into a continuously and real-time monitoring components after careful discussion of the constraints.
1. 葉宗鑫,“東南亞生質燃燒源區及下風區氣膠與雲凝結核特性探討泰北安康山與台灣鹿林山之比較分析”,碩士論文,國立中央大學大氣物理研究所,中壢市(2013)。
2. 廖嘉政,“鋼鐵工廠周界及鄰近敏感點之懸浮微粒物化特性分析及污染源解析”,碩士論文, 國立中山大學環境工程研究所,高雄市(2011)。
3. Ohta, S., and Okita, T., “A chemical characterization of atmospheric aerosol in Sapporo,” Atmospheric Environment. 1990;24A: 815-82.
4. Watson, J.G., and Chow, J.C., “Clear sky visibility as a challenge for society,” Annul Review of Energy and the Environment.1994;19:241-266.
5. Huang, L.K., Yuan, C.S., Wang, G.Z., and Wang, K., “Chemical characteristics and source apportionment of PM10 during a brown haze episode in Harbin, China,” Particuology. 2011;9:32-38.
6. 方緯宸,“以COMSOL Multiphysics模擬氣懸微粒於靜電集塵式細胞株暴露系統中之運動軌跡”,碩士論文,國立中央大學環境工程研究所,桃園市(2013)。
7. 行政院環境保護署細懸浮微粒(PM2.5)儀器比對及化學成分觀測網規劃作業計畫,EPA-101-FA11-03-A262,2013。
8. 空氣中懸浮微粒(PM2.5)檢測方法-手動採樣法NIEA A205.11C。
9. 空氣中粒狀污染物自動檢測方法-慣性質量法NIEA A207.10C。
10. 貝他射線衰減法NIEA A206.10C。
11. 周鴻哲,“利用石英晶體微天平發展細胞檢測平台”,博士論文,大同大學生物工程研究所,台北市(2009)。
12. 傅琪鉦,“利用石英晶體微天秤之雙頻量測分離質量和液體負載效應”,碩士論文,國立臺灣大學醫學工程學研究所,台北市(2002)。
13. 蕭文宏,“利用半導體製程製作微小化之QCM陣列生物感測器”,碩士論文,國立交通大學奈米科技研究所,新竹市(2005)。
14. Mat H. Ho, Applications of Quartz Crystal Microbalances in Aerosol Mass Measurement.
15. J.G. Olin, Proc. Joint Conf. Sensing Environ. Pollutants, Am. Inst. Aero, and Astro.,Palo Alto, CA. 1971; Paper No. 71-1100.
16. J.G. Olin and G.J. Sem, Atmos. Environ.. 1971;5:653.
17. R.L. Chuan, in R.K. Stevens and W.F. Herget (Eds.), Analytical Methods Applied to Air Pollution Measurements, Ann Arbor Science Pub., Inc., Ann Arbor, MI. 1974;163-189.
18. G.J. Sem and K. Tsurubayashi, Am. Ind. Hyg. Assoc. J. 1975;36:791.
19. D. Wallace and R.L. Chuan, Proc. 8th Mat. Res. Symp. Meth. Stand. Environ.Measurement, Nat. Bur. Stand., Gaithersburg, MD, September. 1976.
20. E.J. Mroz, Microbeam Anal.. 1982;17:167.
21. H. Pataschnick, G. Rupprecht, and J.C.F. Wang, Div. Petro. Chem., Am. Chem. Soc,Washington, DC, Preprint. 1980;25:188.
22. 吳政穎,“相對溼度變化對於QCM氨氣感測器之影響”,碩士論文,國立東華大學生物技術研究所,花蓮縣(2008)。
23. 朱育賢,“雙面式氧化鋅壓電換能器之研究”,碩士論文,國立中山大學電機工程學系,高雄市(2011)。
24. 江明璋,“設計改良式表面聲波感測器應用於低濃度混合氣體量測” ,碩士論文,國立清華大學動力機械工程學系,新竹市(2013)。
25. 郝旭昶,“氣相與液相表面聲波感測器元件與系統之研究、製作及開發”,博士論文,國立清華大學奈米工程與微系統研究所,新竹市(2012)。
26. 陳建欽,“石英柱狀微結構之表面聲波感測器之研製與特性分析”,碩士論文,國立中央大學機械工程學系,中壢市(2013)。
27. 楊振達,控制區域網路傳輸結合即時胎壓感測於電動車型車性能之研究,碩士論文,國立高雄應用科技大學應用工程科學研究所,高雄市(2014)
28. R.L. Chuan, Aerosol Science. 1970;1:111.
29. R.L. Chuan, Proc. Joint Conf. Sensing Environ. Pollutants, Am. Inst. Aero, and Astro., Palo Alto, CA. 1971;71-1099.
30. J.G. Olin and G.J. Sem, Piezoelectric Aerosol Mass Concentration Monitor, Paper given at Symp. Adv. Instrum. Air Pollution Control, National Air Pollution Control,HEW, Cincinnati, OH. 1969.
31. J.G. Olin, G.J. Sem, and D.L. Christenson, Paper given at Am. Ind. Hyg. Assoc. Ann.Mtg., Detroit, MI. 1970.
32. J.G. Olin, G.J. Sem, and D.L. Christenson, Am. Ind. Hyg. Assoc. J.. 1971;32:209.
33. G.J. Sem, K. Tsurubayashi, and K. Homma, Am. Ind. Hyg. Assoc. J.. 1977; 38:580.
34. P.S. Daley and D.A. Lundgren, Am. Ind. Hyg. Assoc. J.. 1975;36:518.
35. P.S. Daley, Ph.D. Dissertation, Univ. Florida, Gainesville, FL. 1974.
36. P.S. Daley, Real Time Aerosol Mass Concentration Measurement: Capabilities and Limitations of the Piezoelectric Microbalance Technique, Paper given at Int. Conf. of Human Environ. Conservation, Warsaw, Poland. 1974.
37. D.A. Lundgren, L.D. Carter, and P.S. Daley, in B.Y.H. Liu (Ed.), Fine Particles,Aerosol Generation, Measurement, Sampling and Analysis, Academic, NY. 1976;485-510.
38. G.J. Sem and P.S. Daley, in D.A. Lundgren, F.S. Harris, Jr., W.H. Marlow, M.Lippman, W.E. Clark, and M.D. Durham (Eds.), Aerosol Measurement, Univ. Press of Florida, Gainesville, FL. 1979;672-686.
39. T.E. Carpenter and D.L. Brenchley, Am. Ind. Hyg. Assoc. J.. 1972;33:503.
40. G.J. Sem, Performance of the Piezobalance Respirable Aerosol Mass Monitor, Paper given at the 4th Mtg. GAF Gesellschaft fur Aerosolforschung, Bad Soden, FRG. 1976.
41. G.J. Sem, Proc. 8th Mat. Res. Symp. Meth. Stand. Environ. Measurement, Nat. Bur.Stand., Gaithersburg, MD, September. 1976.
42. Banerjee, S., Mallick, K., Bhattacharya, B.K., Chaurasia, S., Dutta, S.,Nigam, R., Mukherjee, J., Kar, G., and Gadgil, A.S.,“Evapotranspiration using MODIS data and limited ground observations over selected agroecosystems in India,” International Journal of Remote Sensing. 2007;28:2091-2110.
43. Attri, A.K., Tandon, A., and Yadav, S., “Coupling between meteorological factors and ambient aerosol load,” Atmospheric Environment. 2010;44:1237-1243.
44. Banerjee, S., Mallick, K., Bhattacharya, B.K., Chaurasia, S., Dutta, S.,Nigam, R., Mukherjee, J., Kar, G., and Gadgil, A.S.,“Evapotranspiration using MODIS data and limited ground observations over selected agroecosystems in India,” International Journal of Remote Sensing. 2007;28:2091-2110.
45. Zhang, X., and McMurry, P.H., “Theoretical analysis of evaporative lossed from impactor and filter deposits,” Atmospheric Environment. 1987; 21:1779-1789.
46. Kulshrestha, A., Satsangi, P.G., Masih, J., and Taneja, A., “Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India,” Science of the Total Environment. 2009;407: 6196-6204.
47. 楊奇儒等人,”拜香燃煙中不同粒徑微粒之PAHs濃度分佈研究”,成大研發快訊 第十卷 第一期,台南市(2009)。
48. 楊奇儒等人,”低污染拜香研發:拜香主要成分對拜香燃煙特徵之影響”,博士論文,國立成功大學環境工程學系,台南市(2006)。
49. 趙世閔,”潔淨室外氣空調箱空氣水洗機去除無機酸鹼氣體污染物”,碩士論文,國立臺北科技大學能源與冷凍空調工程系,台北市(2008)。
50. 空氣污染控制與設計-粒狀污染物防制教材,國立中山大學環境工程研究所。