| 研究生: |
周世偉 Shih-Wei Chou |
|---|---|
| 論文名稱: |
非線性守恆律的擾動Riemann 問題的古典解 Classical Solution to the Perturbed Riemann Problem of Scalar Nonlinear Balance Law |
| 指導教授: |
洪盟凱
John M. Hong |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 27 |
| 中文關鍵詞: | 非線性黎曼問題 、特徵線法 、守恆律 |
| 外文關鍵詞: | Perturbed Riemann problems, Riemann problems, Nonlinear balance laws, Characteristic method, Conservation laws |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本文裡我們學習非線性守恆律的擾動Riemann 問題的古典解之廣域存在性,使用特徵線的方法去建立擾動的Riemann問題的古典解,而且經由擾動的Riemann問題的極限獲得Riemann 問題的解。
In this paper we study the global existence of classical solutions to the perturbed Riemann problem of scalar nonlinear balance law. The characteristic method is used to establish the existence of classical perturbed Riemann solutions. Moreover, the generalized solutions of Riemann problem to scalar balance law is obtained by taking the limit of perturbed Riemann solutions. Furthermore, we also obtain the self-similarity of generalized Riemann solutions (rarefaction waves) which enables us to apply Lax''s method to the Riemann problem of scalar nonlinear balance laws.
C. Dafermos, Generalized characteristics and the structure of solutions of hyperbolic conservation laws, Ind. Univ. Math. J. (1977), 1097-1119.
C. Dafermos, Solutions of the Riemann problem for a class of conservation laws by the viscosity method, Arch. Ration. Mech. Anal.(1973), 1-9.
G. Dal Maso, P. LeFloch and F. Murat, Definition and weak
stability of nonconservative products, J. Math. Pure. Appl.,1995), 483-548.
J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math.,1956), 697-715.
J. M. Hong, An extension of Glimm''s method to inhomogeneous strictly hyperbolic systems of conservation laws by "weaker than weak" solutions of the Riemann problem, J. Diff. Equations,2006), 515-549.
J. M. Hong and B. Temple, A Bound on the Total Variation of the Conserved Quantities for Solutions of a General Resonant Nonlinear Balance Law, SIAM J. Appl.Math. 64, No 3, (2004), pp 625-640.
E. Isaacson and B. Temple, Convergence of $2 imes 2$ by Godunov method for a general resonant nonlinear balance law, SIAM J. Appl.Math. 55 (1995), pp 625-640.
K. T. Joseph and P. G. LeFloch, Singular limits for the Riemann problem:general diffusion, relaxation, and boundary condition, in " new analytical approach to multidimensional balance laws", O. Rozanova ed., Nova Press, 2004.
S. Kruzkov, First order quasilinear equations with several space variables, Math. USSR Sbornik (1970), 217-273.
P. D. Lax, Hyperbolic system of conservation laws, II, Comm. Pure Appl. Math.,1957), 537-566.
T. P. Liu, The Riemann problem for general systems of conservation laws, J. Diff. Equations,1975), 218-234.
T. P. Liu, Quaslinear hyperbolic systems, Comm. Math. Phys.,1979), 141-172.
C. Mascia and C. Sinestrari, The perturbed Riemann problem for a balance law, Advances in Differential Equations, 1996-041.
O. A. Oleinik, Discontinuous solutions of nonlinear differential equations,Amer. Math. Soc. Transl. Ser. 2, (1957), 95-172.
C. Sinestrari, The Riemann problem for an inhomogeneous
conservation law without convexity, Siam J. Math. Anal., Vo28,No1, (1997), 109-135.
C. Sinestrari, Asymptotic profile of solutions of conservation laws with source, J. Diff. and Integral Equations, Vo9, No3,(1996), 499-525.
M. Slemrod and A. Tzavaras, A limiting viscosity approach for the Riemann problem in isentropic gas dynamics, Ind. Univ. Math. J. (1989), 1047-1073.
J. Smoller, Shock waves and reaction-dffusion equations, Springer,New York, 1983.
A. Tzavaras, Waves interactions and variation estimates for self-similar zero viscosity limits in systems of conservation laws, Arch. Ration. Mech. Anal., (1996), 1-60.
A. Volpert, The space BV and quasilinear equations, Maths. USSR Sbornik (1967), 225-267.