跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許軒豪
Shiuan-Hal Shiu
論文名稱: Photoproduction of Λ and Σ0 hyperons off protons with linearly polarized photons at Eγ=1.5–3.0 GeV
指導教授: 林宗泰
Willis T. Lin
章文箴
Wen-Chen Chang
郡英輝
Hideki Kohri
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 211
中文關鍵詞: K+介子光致產生微分反應截面光束不對稱Λ 超子Σ0 超子
外文關鍵詞: K+ meson, Photoproduction, differential cross sections, photon-beam asymmetry, Λ hyperon, Σ0 hyperon
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文詳細記述在SPring-8實驗設施中,測量γp->K+Λ以及γp->K+Σ0反應及其結果。除了當K+介子分布在前方角度時的微分反應截面(differential cross sections)量測外,我們亦提供了光束不對稱(photon-beam asymmetry)的量測結果。在入射光能量大於2.4 GeV時的光束不對稱是新的量測結果。
    本實驗之資料取得時間於2007年10月6日起至同月18日止,並於同
    年11月8日起至12月17日止。實驗資料之取得,係利用光子束能量介
    於1.5至3.0 GeV之間之線性偏振標記光子束(linearly-polarized taggedphoton beams),撞擊液態氫之靶材,並探測分布於前方角度的K+介子。實驗用的探測儀器是LEPS探測儀(spectrometer)。
    利用K+介子的未量測質量譜(missing-mass spectra),可以標定出Λ和Σ0的反應。藉由量測飛行時間,動量以及飛行距離我們可以重建K+介子之質量。我們可以藉由選定3倍標準差的區間,來作為K+介子的粒子標定。此處之標準差乃由動量相關之質量解析度得出。在高動量的量測區間中,我們利用預測背景譜線的方式來預測錯誤標定的π+介子對實驗數據可能造成的影響。而利用蒙地卡羅法產生之模擬數據與實驗數據之一致性亦經由校準t0來達成。
    當入射光子束的能量提升時,γp->K+Λ以及γp->K+Σ0之微分反應截面都呈現緩慢的下降。在所有的量測能量範圍裡,Λ的微分反應截面都與量測到的K+介子角度有正相關,即角度越往前,其微分反應截面越高。此一正相關,為t-通道反應的典型特徵。而Σ0的微分反應截面則沒有與量測到的K+介子角度分布有顯著相關。此一現象代表了t-通道反應可能在此反應並不顯著,並且揭示s-通道之核子共振態(nucleon resonance) 反應可能在此有相當的重要性。
    光束不對稱在兩個反應的所有探測區間中的結果都是正值,如此現象可能可以顯示K*為t-通道反應過程中的主要交換粒子。兩個反應的光束不對稱結果皆與入射光束能量有極度的正相關,即入射光束能量越大,其光束不對稱數值越大,其最大值截止於+0.6。在K+Σ0的反應中,其光束不對稱的測量結果皆大於K+Λ反應的結果。對比於基於Regge-trajectory 的t-通道模型以及基於核子共振態的模型之理論預測,顯示出t-通道反應在超子光致產生(hyperon photoproduction)過程中,於此能量範圍的產生機制提供了主要的貢獻,以及核子共振態
    在此亦有不可忽略的貢獻。


    This thesis presents measurements of the reactions γp->K+Λ and γp->K+Σ0 at SPring-8. In addition to differential cross sections, the photon-beam asymmetries were measured at forward K+ production angles. The photon-beam asymmetry in the range of Eγ> 2.4 GeV
    were measured first time.
    The data were collected from October 6th to October 18th, 2007 and November 8th to December 17th, 2007. Data were obtained at SPring-8 using a linearly-polarized tagged-photon beams in the range of Eγ= 1.5 - 3.0 GeV with a liquid hydrogen target. Particles produced at the target were detected with the LEPS spectrometer.
    The Λ and Σ0 production was identified in K+ missing-mass spectra. The particle identification (PID) of the K+ is done by a 3σ cut on their reconstructed mass based on the measured time of flight, momentum and path length, where σ is the momentum dependent mass resolution. The degree of π+ contamination in the selected K+ increased for particles of larger momenta. A side-band method has been applied to estimate the miss-identified π+ in K+ at high-momentum region. The t0 correction has been applied to improve the consistency of the mean value of mass squared between Monte-Carlo and real data.
    With increasing photon energy, the cross sections for both the γp->K+Λ and γp->K+Σ0 reactions decrease slowly. The forward peaking in the angular distributions of cross sections, a characteristic feature of t-channel exchange, is observed for the production of Λ in the whole
    observed energy range. That Σ0 production did not show the forward peaking behaviour reflects a less dominant role of t-channel contribution and the importance of s-channel nucleon resonance contributions in this channel.
    The photon-beam asymmetries are found to be positive for both reactions in all observed regions and this suggests the dominance of K* exchange in the t-channel . These asymmetries are found to increase gradually with the photon energy and have a maximum value of +0.6 for both reactions. The photon-beam asymmetries in K+Σ0 channel
    is systematically higher than those in K+Λ channel. Comparison with theoretical predictions based on the Regge-trajectory in the t-channel and the contributions of nucleon resonances indicates the major role of t-channel contributions as well as non-negligible effects of nucleon resonances to account for the reaction mechanism of hyperon photoproduction in this energy region.

    中文摘要-----i Abstract-----iii Acknowledgements / 誌謝-----v 目錄-----ix 圖目錄-----xi 表目錄-----xiii 1 Introduction-----1 1.1 The standard model-----3 1.2 Quantum Chromodynamics-----4 1.3 Constituent Quark Model and the Missing Resonances Problem-----10 1.4 Kinematic variables-----15 1.5 Motivation-----18 2 Past Measurements and Theoretical Models-----21 2.1 Past measurements-----21 2.1.1 SAPHIR-----22 2.1.2 CLAS-----25 2.1.3 LEPS-----31 2.1.4 GRAAL-----38 2.1.5 Crystal Ball-----40 2.2 Theoretical Models-----42 2.2.1 Isobar Models-----43 2.2.2 Coupled Channel analysis-----45 2.2.3 Regge Models-----49 2.3 Current Work-----54 3 Experimental Setup-----55 3.1 Backward Compton scattering (BCS)-----56 3.2 Laser-electron photon beam-----59 3.2.1 SPring-8-----60 3.2.2 LEPS facility-----61 3.2.3 Laser system-----62 3.2.4 Tagging system-----64 3.2.5 Target-----64 3.3 LEPS spectrometer-----65 3.3.1 Upstream veto counter-----66 3.3.2 Trigger counter-----67 3.3.3 Vertex detector-----68 3.3.4 Dipole magnet-----69 3.3.5 e+e- blocker-----69 3.3.6 Drift chambers-----71 3.3.7 e+e- veto counter-----72 3.3.8 TOF wall-----72 3.3.9 Trigger-----74 3.4 Analysis overview-----75 4 Data Analysis-----79 4.1 Event selections-----80 4.1.1 Event selection conditions-----80 4.1.2 Event selection summary-----87 4.2 t0 Calibration-----88 4.2.1 Why we need t0 calibration?-----88 4.2.2 t0 calibration procedure-----92 4.3 Background Estimation-----95 4.3.1 Contamination fraction method-----98 4.3.2 Mirror method-----100 4.3.3 Side-band method-----103 4.4 Monte-Carlo-----106 5 Results and Discussions-----113 5.1 Differential cross sections-----113 5.1.1 Calculation of differential cross sections-----113 5.1.2 Results of differential cross sections-----116 5.2 Beam asymmetry (Σγ)-----118 5.2.1 Calculation of beam asymmetry (Σγ)-----118 5.2.2 Results of Photon-beam asymmetry (Σγ)-----122 5.3 Systematic error estimation-----122 5.4 Physics discussion-----126 6 Summary-----139 參考文獻-----141 Appendix A: The smallest χ2 distribution for all Time of Flight slats-----147 Appendix B: Fitting results-----157 Appendix C: The comparision of the real data and the simulated Λ and Σ0 shape-----161 Appendix D: Check the Monte-Carlo acceptance efficiency-----169

    [1] D. H. Perkins, Introduction to High Energy Physics 4-th edition, Cambridge University Press, (2000).
    [2] D. Griffiths, Introduction to Elementary Particles, WILEY-VCH, (2004).
    [3] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, Westview Press, (1995).
    [4] A. V. Anisovich, V. V. Anisovich, M. A. Matveev, V. A. Nikonov, J. Nyiri, and A. V. Sarantsev MESON AND BARYONS Systematization and Methods of Analysis , World Scientific Publishin Co. Pte. Ltd., (2008).
    [5] A. De Rujula, Howard Georgi and S. L. Glashow, Phys. Rev. D 12, 147 (1975).
    [6] N. Isgur and G. Karl, Phys. Rev. D 18, 4187 (1978).
    [7] N. Isgur and G. Karl, Phys. Rev. D 19, 2653 (1979).
    [8] R. Koniuk and N. Isgur, Phys. Rev. D 21, 1868 (1980).
    [9] Particle Data Group, Phys. Rev. D 86 (2012).
    [10] D. B. Lichtenberg et al. , Phys. Rev. Lett. 48, 1653 (1982).
    [11] R. A. Adelseck and B. Saghai, Phys. Rev. C 42, 108 (1990).
    [12] I. S. Barker, A. Donnachie, and J. K. Storrow, Nucl. Phys. B 95, 347 (1975).
    [13] S. Bethke, Prog. Part. Nucl. Phys. 58, 351 (2007).
    [14] D. B. Leinweber, Visualizations of the QCD vacuum,
    http://arxiv.org/ps/heplat/0004025 , (1999).
    [15] http://www.particleadventure.org/ .
    [16] D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973).
    [17] D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).
    [18] A. Boyarski et al., Phys. Rev. Lett. 22, 1131 (1969).
    [19] D. J. Quinn, J. P. Rutherfoord, M. A. Shupe, D. J. Sherden, R. H. Siemann and C. K. Sinclair, Phys. Rev. D 20, 1553 (1979).
    [20] M. Bockhorst et al. (SAPHIR Collaboration), Z. Phys. C 63, 37 (1994).
    [21] M. Q. Tran et al. (SAPHIR Collaboration), Phys. Lett. B 445, 20 (1998).
    [22] K.-H. Glander et al. (SAPHIR Collaboration), Eur. Phys. Jour. A 19, 251 (2004).
    [23] R. G. T. Zegers et al. (LEPS Collaboration), Phys. Rev. Lett. 91, 092001 (2003).
    [24] M. Sumihama et al. (LEPS Collaboration), Phys. Rev. C 73, 035214 (2006).
    [25] K. Hicks et al. (LEPS Collaboration), Phys. Rev. C 76, 042201(R) (2007).
    [26] H. Kohri et al. (LEPS Collaboration), Phys. Rev. Lett. 97, 082003 (2006).
    [27] J. W. C. McNabb et al. (CLAS Collaboration), Phys. Rev. C 69, 042201(R) (2004).
    [28] R. Bradford et al. (CLAS Collaboration), Phys. Rev. C 73, 035202 (2006).
    [29] R. Bradford et al. (CLAS Collaboration), Phys. Rev. C 75, 035205 (2007).
    [30] M. E. McCracken et al. (CLAS Collaboration), Phys. Rev. C 81, 025201 (2010).
    [31] B. Dey et al. (CLAS Collaboration), Phys. Rev. C 82, 025202 (2010).
    [32] C. A. Paterson et al. (CLAS Collaboration), Phys. Rev. C 93, 065201 (2016).
    [33] A. Lleres et al. (GRAAL Collaboration), Eur. Phys. J. A 31, 79 (2007).
    [34] A. Lleres et al. (GRAAL Collaboration), Eur. Phys. J. A 39, 149 (2009).
    [35] O. Bartalini et al. (GRAAL Collaboration), Eur. Phys. J. A 26, 399 (2005).
    [36] T. C. Jude et al. (Crystal Ball Collaboration), Phys. Lett. B 735, 112 (2014).
    [37] A. Starostin et al. (Crystal Ball Collaboration), Phys. Rev. C 64, 055205 (2001).
    [38] Particle Data Group, Phys. Lett. B 667 (2008).
    [39] T. Mart and C. Bennhold, Phys. Rev. C 61, 012201(R) (1999).
    [40] T. Mart and C. Bennhold, arXiv:nucl-th/0412097.
    [41] S. Capstick and W. Roberts, Phys. Rev. D 49, 4570 (1994).
    [42] S. Capstick and W. Roberts, Phys. Rev. D 58, 074011 (1998).
    [43] T. Mart, C. Bennhold and C. E. Hyde-Wright, Phys. Rev. C 51,
    R1074 (1995).
    [44] T. Mart and C. Bennhold, Phys. Rev. C 61, 012201(R) (1999).
    [45] T. Mart and M. J. Kholili, Phys. Rev. C 86, 022201(R) (2012).
    [46] T. Mart, Phys. Rev. C 90, 065202 (2014).
    [47] T. Mart, S. Clymton and A. J. Arifi, Phys. Rev. D 92, 094019 (2015).
    [48] T. Mart and S. Sakinah, Phys. Rev. C 95, 045205 (2017).
    [49] F. X. Lee, T. Mart C. Bennhold, H. Haberzettl and L. E. Wright, Nucl. Phys. A 695, 237 (2001).
    [50] Aachen-Berlin-Bonn-Hamburg-Heidelberg-Munchen Collaboration, Phys. Rev. 188, 2060 (1969).
    [51] M. Froissart, Phys. Rev. 123, 1053 (1961).
    [52] B.A. Meckinget al. Nucl. Instrum. Methods A 503, 513 (2003).
    [53] A. D’Angelo, O. Bartalini, V. Bellini, P. Levi Sandri, D. Moricciani, L. Nicoletti and A. Zucchiatti, Nucl. Phys. A 455, 1 (2000).
    [54] R.H. Milburn, Phys. Rev. Lett. 10, 75 (1963).
    [55] F.R. Arutyunyan, V.A. Tumanian, Phys. Lett. 4, 176 (1963).
    [56] K, Tsumaki, SPring-8 annual report 132(1998).
    [57] D.I. Soberet al. Nucl. Instrum. Methods A 440, 263 (2000).
    [58] https://edge.coherent.com/assets/pdf/Innova-Sabre-MotoFreD-Data-Sheet.pdf
    [59] T. Matsumura, Master thesis, Osaka University, 2000.
    [60] S. H. Hwang et al. (LEPS Collaboration), Phys. Rev. Lett. 108, 092001 (2012).
    [61] M. Sumihama LEPS Technical note No. 61
    [62] S. H. Hwang LEPS Technical note No. 62
    [63] CERN Application Software Group, GEANT3.2, CERN Program Library Writeup Report No. W5013 (1994)
    [64] R. Frühwirth, Nucl. Instrum. Methods A 262, 444 (1987).
    [65] H. Kohri LEPS Technical note No. 74
    [66] http://rprmodel.ugent.be/calc/
    [67] http://pwa.hiskp.uni-bonn.de/BG2014_02_obs_int.htm
    [68] https://maid.kph.uni-mainz.de/kaon/kaon-cross.html
    [69] S. Janssen, J. Ryckebusch, D. Debruyne, and T. Van Cauteren, Phys. Rev. C 65, 015201 (2001).
    [70] T. Corthals, J. Ryckebusch, and T. Van Cauteren, Phys. Rev. C 73, 045207 (2006).
    [71] T. Corthals, T. Van Cauteren, J. Ryckebusch, and D. G. Ireland, Phys. Rev. C 75, 045204 (2007).
    [72] L. De Cruz, J. Ryckebusch, T. Vrancx, and P. Vancraeyveld, Phys. Rev. C 86, 015212 (2012).
    [73] T. Regge, Nuovo Cim. 14, 951 (1959).
    [74] A. V. Anisovich, E. Klempt, A. V. Sarantsev and U. Thoma, Eur. Phys. J. A 24, 111 (2005).
    [75] A. V. Sarantsev, V. A. Nikonov, A. V. Anisovich, E. Klempt and U. Thoma, Eur. Phys. J. A 25, 441 (2005).
    [76] A. V. Anisovich, V. Kleber, E. Klempt, V. A. Nikonov, A. V. Sarantsev and U. Thoma, Eur. Phys. J. A 34, 243 (2007).
    [77] A. V. Anisovich, E. Klempt, V. A. Nikonov, A. V. Sarantsev and U. Thoma, Eur. Phys. J. A 47, 27 (2011).
    [78] A. V. Anisovich, E. Klempt, V. A. Nikonov, A. V. Sarantsev and U. Thoma, Eur. Phys. J. A 47, 153 (2011).
    [79] A. V. Anisovich, R. Beck, E. Klempt, V. A. Nikonov, A. V. Sarantsev and U. Thoma, Eur. Phys. J. A 48, 15 (2012).
    [80] E. Gutz et al. (CBELSA/TAPS Collaboration), Eur. Phys. J. A 50, 74 (2014).
    [81] B. Dey and C. A. Meyer, arXiv:1106.0479.
    [82] Y. Yanai, H. Kohri, S. H. Shiu et al. (LEPS Collaboration), A new analysis method for subtracting backgrounds due to misidentified π+ under hyperons produced by the p(γ, K+)X reaction in LEPS experiments, preparing for publication.
    [83] M. Guidal, J. M. Laget and M. Vanderhaeghen, Nucl. Phys. A 627, 645 (1997).
    [84] M. Guidal, J. M. Laget and M. Vanderhaeghen, Phys. Rev. C 68, 058201 (2003).
    [85] M. Sumihama, Ph.D. thesis, Osaka University, 2003.
    [86] S. H. Hwang, Ph.D. thesis, Pusan National University, 2012.
    [87] J. J. Melone, Ph.D. thesis, University of Glasgow, 2005.

    QR CODE
    :::