跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林聖景
Sheng-Ching Lin
論文名稱: 渠床堆積顆粒體之滲流破壞過程及撞擊力分析
指導教授: 周憲德
Xian-De Zhou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 97
中文關鍵詞: 土石流顆粒流堆積體衝擊力滲流破壞
外文關鍵詞: debris flows, granular flows, seepage failure, deposition, impact force
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在實驗室進行渠床堆積體因滲流作用,顆粒堆積體破壞發展成顆粒流之渠道實驗,使用高速攝影機進行影像分析,了解堆積體受上游入流水的影響,堆積體內部滲流作用下的破壞歷程、洪峰流量、顆粒流的運動特性及撞擊擋板的受力分析。採用超聲波設備量測顆粒流通過各斷面的發展歷程及顆粒流速度,比較上游供水量及坡度在斷面發展歷程及速度的影響。自行組裝電阻式應變感應器量測擋板受力,與動壓、靜壓模型理論比較。
    顆粒流波峰高度因坡度、供水量、底床有無堆積而有所不同,顆粒流波峰在固定底床條件下高度呈現衰減趨勢,而在堆積底床條件下顆粒流波峰高度發生捲增現象,高度呈現增加趨勢。顆粒流撞擊垂直擋板的高度可以知道擋板總受力有明顯的峰值發生,顯示撞擊高度與應力的形成方式有一定的相關性。


    The debris flows transformed from the collapse a granular pile by the action of upstream runoff and seepage was experimentally investigated in an inclined flume in this study. The mobilization process of the granular particles are observed by employing image analysis and ultrasonic sensors, while the impact force was measured by the load cell. The measured impact forces were compared with the dynamic pressure model and hydrostatic pressure model. The surge height of granular flows depends on the channel slope, seepage discharge and the bed deposition. For a rigid bed, the surge height decays with distance. While the surge height grows with distance for the cases of the granular pile on a loose bed. An obvious peak value of impact force upon the vertical wall was observed once the granular surge reached the wall, while subsequent increase of the force was related to the water pressure due to inundation .

    摘要 I 目錄 II 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機及目的 3 1.3 研究方法 3 1.4 論文架構 3 第二章 文獻回顧 6 2.1 土石流定義及型態 6 2.1.1 土石流相關定義 6 2.1.2 土石流特性 6 2.2 土石流發生之影響因子 6 2.2.1 發生土石流臨界坡度之公式 6 2.2.2 豐富的土石材料 8 2.2.3 臨界流量 9 2.3 天然土石壩的破壞 10 2.4 土石流壓力理論分析相關研究 12 2.4.1 土石流衝擊力 12 2.4.2 衝擊力靜壓模型 13 2.4.3 衝擊力動壓模型 14 第三章 顆粒堆積潰決實驗 17 3.1 實驗設備 17 3.2 顆粒特性 22 3.3 實驗步驟 23 3.4 分析方法 26 3.4.1 顆粒堆積體潰散流況分析 26 3.4.2 顆粒流高度分析 26 3.4.3 壓力分析 26 第四章 實驗結果與討論 29 4.1 上游堆積體潰決型態與啟動機制 32 4.2 入流量對堆積水深影響 34 4.2.1 固定底床 34 4.2.2 堆積底床 36 4.2.3 洪峰流量 38 4.3 顆粒流斷面高度變化 42 4.3.1 固定底床下各斷面高度歷程 42 4.3.2 堆積底床下各斷面高度歷程 42 4.4 顆粒流特性 53 4.4.1 固定底床-位置歷程 53 4.4.2 堆積底床-位置歷程 56 4.5 不同參數對顆粒流影響 58 4.5.1 固定底床-入流量及坡度對波峰高度影響 59 4.5.2 堆積底床-入流量及坡度對波峰高度影響 60 4.6 顆粒流速度 61 4.7 顆粒流撞擊力分析 67 4.7.1 電阻應變計分析 68 4.7.2 撞擊力公式比較 72 第五章 結論與建議 76 5.1 結論 76 5.1.1 固定底床 76 5.1.2 堆積底床 77 5.2 建議 78 參考文獻 79

    [1] 水土保持學會(1992),“水土保持手冊”,中華水土保持學會。
    [2] 詹錢登(1997),“土石流理論教材大綱”,行政院教育部顧問室,編號86-土木-教材-C011。
    [3] 山口伊佐夫(1985),“防砂工程學”,國立台灣大學森林學系譯,台北,第150-174 頁。
    [4] 游繁結、賴建信(1996),“不同粒徑組成之土石流流動特性研究”,中華水土保持學報,第27 卷,第3 期,第213-222 頁。
    [5] 涂秉杰(2015),“潰壩流撞擊直立平板之流況分析”,國立中央大學木工程學系研究所,碩士論文。
    [6] 黃子益(2016),“滲流引致渠床顆粒堆積之潰散過程分析”,國立中央大學木工程學系研究所,碩士論文。
    [7] 張立憲(1985),“土石流特性之探討”,中華水土保持學報,第16 卷,第1 期,第135-141 頁。
    [8] 周憲德、李璟芳,黃郅軒,張友龍 (2013),「火炎山礫石型土石流之監測與流動特性分析」,中華民國水土保持學報,第44卷,第2期,頁144-157。
    [9] Armanini, A. (1997), “On the dynamic impact of debris flows”, Volume 64 of the series Lecture Notes in Earth Sciences, pp. 208-226.
    [10] Armanini, A. and Scotton, P. (1993), “On the dynamic impact of a debris flow on structures”, Proceedings of XXV Congress IAHR, Tokyo (Tech. Sess. B, III), pp. 203–210.
    [11] Bathurst, J. C., Graf, W. H., and Cao, H. H. (1987), “Bed load discharge equations for steep mountain river”, Sediment Transport in Gravel-Bed Rivers, pp.453–477.
    [12] Brighenti,R., Segalini, A., Ferrero, A. M. (2013), “Debris flow hazard mitigation: A simplified analytical model for the design of flexible barriers”, Computers and Geotechnics, 54, pp.1–15.
    [13] Brand, E.W. (1981), “Some thoughts on rain-induced slope failure”,Proceedings of 10th International Conference and Foundation Engineering,Vol.Ⅰ, pp. 373-376.
    [14] Bugnion, L., McArdell, B. W., Bartelt, P., and Wendeler, C. (2011),“Measurements of hillslope debris flow impact pressure on obstacles”,Landslides, 9, pp. 179-187.
    [15] Canelli, L., Ferrero, A. M., Migliazza, M., and Segalini, A. (2012):, “Debris flow risk mitigation by the means of rigid and flexible barriers -experimental tests and impact analysis”, Nat.Hazards Earth Syst. Sci., 12, pp. 1693-1699.
    [16] Cui,P. Zeng, C. and Lei, Y. (2015), “Experimental analysis on the impact force of viscous debris flow”, Earth Surface Processes and Landforms, pp.1644–1655.
    [17] Cui,P., Guo, X. J. and Zhuang, J. Q. (2014), “Determination of the runoff threshold for triggering debris flows in the area affected by the Wenchuan Earthquake”, Natural Hazards Earth System Sciience Discuss., 2, pp. 4659–4684.
    [18] Graf, W. H. (1971), “Hydraulics of Sediment Transport”, McGraw-Hill, New York.
    [19] Gregoretti, C. (2000), “The initiation of debris flow at high slopes: experimental results”, Journal of Hydraulic Research, 38, pp. 83–88.
    [20] Gregoretti,C. (2010), “The initiation of debris flow at high slopes:Experimental results”, Journal of Hydraulic Research, 38:2, pp.83-88.
    [21] Gregoretti,C. and Fontana, G. D. (2008), “The triggering of debris flow due to channel-bed failure in some alpine headwater basins of the Dolomites: analyses of critical runoff”, Hydrological Processes, 22, pp.2248–2263.
    [22] Hübl,J., Suda, J., Proske, D., Kaitna, R., Scheidl, C. (2009), “Debris Flow Impact Estimation”, International Symposium on Water Management and Hydraulic Engineering, 1-5 , pp.56.
    [23] Hungr, O., Morgan, G.C., and Kellerhals, R. (1984), “Quantitative analysis of debris torrent hazards for design of remedial measures”, Canadian Geotechnical Journal.,21, pp. 663-677.
    [24] Johnson, A. M. and Rodine, J. D. (1984), “Debris Flow”, Slope Instability,John Wiley & Son Ltd., pp. 257-361.
    [25] Kim,Y., Nakagawa, H., Kawaike, K., and Zhang, H. (2013), “ Study on Characteristic Analysis of Closed-type Sabo Dam with a Flap due to Dynamic Force of Debris Flow”, Annuals of Disas. Prev. Res. Inst., Kyoto Univ., No. 56 B.
    [26] Krawtschuk, A., Zimmermann, T., Proske, D. (2013), “Analysing Debris-Flow Impact Models, Based on a Small Scale Modelling Approach”, Surv Geophys, 34, pp.121–140.
    [27] Lichtenhahn, C. (1973), “Die Berechnung von Sperren in Beton und Eisenbeton”, Mitteilungen der Forstlichen Bundesanstalt Wien, Vol. 102, pp. 91-127
    [28] National Institute for Land and Infrastructure Management. Japan. (2011), “Management of sediment-related risks”, Associated program on flood management: 11.
    [29] Pierson, T.C. (1986), “Flow behavior of channelized debris flows”, Hillslope Processes, pp.269-296.
    [30] Scheidl,C., Chiari, M., Kaitna , R., Mullegger, M., Chen, H. Y., Cui, P., Zhou, G. D., Zhu, X. H., and Tang, J. B. (2014), “Experimental study of debris flow caused by domino failures of landslide dams”, ScienceDirect, International Journal of Sediment Research, 29, pp.414-422.
    [31] Schoktlitsch, A. (1943), “Berechnung der Geschiebefracht”, Wasser und Energiewirtshaft, N.1.
    [32] Scotton, P., and Deganutti, A. (1997), “Phreatic line and dynamic impact in laboratory debris flow experiments”, American Society of Civil Engineers, New York, pp.777- 786.
    [33] Takahashi, T. (1978), “Mechanical characteristics of debris flow”, J. Hydraulics Div., ASCE, Vol. 104, No. 8, pp. 1153-1169.
    [34] Tognacca, C., Bezzola, G. R., and Minor, H. E. (2000), “Threshold criterion for debris flow initiation due to channel bed failure”, Proceedings of the Second International Conference on Debris Flow Hazards Mitigation Taipei, pp. 89–97.
    [35] Turnbull, B., Bowman, E. T., McElwaine, J. N. (2015), “Debris flows: Experiments and modelling”, Comptes Rendus Physique, 16, pp.86-96.
    [36] VanDine, D.F. (1985), “Debris flows and debris torrents in the southern Canadian cordillera”, Canadian Geotechnical Journal, Vol. 22, pp. 290.
    [37] Varnes, D. J. (1958), “Landslides and engineering practice”, HighwayResearch Board, Special Report 29, pp. 20-27.
    [38] Watanabe, M., and Ikeya, H. (1981), “Investigation and analysis of volcanic mud flows on Mt Sakurajima”, International Association of Hydrological Sciences, No. 133, pp. 245-256.
    [39] Yamamoto, A., Yamamoto, S., Toriihara, M., and Hirama, K. (1998), “Impact Load on Sabo Dam due to Debris flow”, Journal of the Japan Society of Erosion Control Engineering, Vo1. 51, No. 2, pp.22-30.
    [40] Zanuttigh, B., Lamberti, A. (2006), “Experimental analysis of the impact of dry avalanches on structures and implication for debris flows”, Journal of Hydraulic Research, 44:4, pp.522-534.
    [41] Zhang, S. (1993), “A comprehensive approach to the observation and prevention of debris flow in China”,Natural Hazards 7, pp. 1-23.

    QR CODE
    :::