| 研究生: |
吳旻晏 WU, MIN-YAN |
|---|---|
| 論文名稱: |
社群服務系統實作及其資料在雲端布署之研究 Implementation of Social Service System and Its Data Placement in Cloud Environment |
| 指導教授: |
陳彥文
Yen-Wen Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 社群服務 、雲端資料中心 、k-means 演算法 、資料放置策略 |
| 外文關鍵詞: | Social Service, Cloud Data Center, k-means algorithm, Data Placement |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於使用社群服務(Social Service)的用戶數急遽上升,如何提供穩定的服務成為一個服務要點。對於社群服務而言,雲端環境可以提供靈活的運算能力及彈性的儲存資源。社群雲端資料中心必須儲存用戶的資料,供運算及互相存取,這些造成雲端資料中心巨大的網路流量,如何在存放相同資料的情形下改善內部網路瓶頸成為雲端資料中心網路優化的一個議題。
本論文主要包括利用社群平台Facebook提供的認證與授權介面實作出社群服務-Cyber Search Engine,提供以”人”為搜尋對象的服務,進而探討如何使用資料類別間的相依程度決定資料在雲端的放置位置; 利用k-means演算法提出配合雲端虛擬機之資料分群與放置方法,並透過模擬驗證其減少網路傳輸成本之效能。在社群服務實作方面,詳述使用到的技術及完整系統架構; 在資料放置方面,我們分別就虛擬機已固定在伺服器上,及虛擬機可任意放置於伺服主機上,分別提出資料放置方法。兩種方法均先將資料類型依相依關係及其被存取的次數轉為資料類型拓樸圖,拓樸圖中的點(node)代表資料的分類,線(link)代表資料分類間的相依關係程度,使用k-means演算法將此資料類型拓樸圖做資料分群以決定資料所適合放置的伺服器及虛擬機。模擬實驗結果顯示所提方法之網路傳送成本,皆比平均放置方法要來得節省。
It is challenge to provide a stable social service that can deal with a huge amount of information and users. Social cloud data center stores social related information generated by users and it causes processing bottleneck during operating the data flow of these data. Therefore, it becomes one of the critical issues to study the data placement issue so that the performance of the cloud data center can be optimized.
In this thesis, a social service, which named “Cyber Serch Engine”, is developed by using Facebook login API and takes efforts to propose two k-means based data placement schemes to achieve better transmission performance in cloud environment. The social graph is adopted to represent the data dependencies and access frequencies. Thus, the link weight denotes the correlation degree between data types and the node weight represents the frequency of a data type being accessed.These proposes two data placement schemes, which are names as the pre-configured LXC scheme and dynamic LXC scheme, allocate social data in proper virtual machine and physical server depend on the relationship between data types to minimize the transmission cost.
The architecture and technology of social service cyber search engine will be mentioned in detailed description. Then, simulations of the proposed two k-means based data placement schemes are provided. The simulation results show that both schemes illustrate better performance than the balance scheme.
[1] Wood, Timothy, et al. "CloudNet: dynamic pooling of cloud resources by live WAN migration of virtual machines." ACM SIGPLAN Notices. Vol. 46. No. 7. ACM, 2011.
[2] Bari, M. Faizul, et al. "Data center network virtualization: A survey."Communications Surveys & Tutorials, IEEE 15.2 (2013): 909-928.
[3] Ackland, Robert. "Social network services as data sources and platforms for e-researching social networks." Social Science Computer Review (2009).
[4] Wilson, Robert E., Samuel D. Gosling, and Lindsay T. Graham. "A review of Facebook research in the social sciences." Perspectives on psychological science 7.3 (2012): 203-220.
[5] Lampinen, Airi, et al. "We're in it together: interpersonal management of disclosure in social network services." Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 2011.
[6] Solomon Hykes and others. “What is Docker?” https://www.docker.com/whatisdocker/
[7] Oracle. " Oracle VM VirtualBox " https://www.virtualbox.org/
[8] Felter, Wes, et al. "An updated performance comparison of virtual machines and linux containers." technology 28 (2014): 32.
[9] Joyent. " Node.js " https://nodejs.org/
[10] Team Automatic. “socket.io” http://socket.io/
[11] Fette, Ian, and Alexey Melnikov. "The websocket protocol." (2011).RFC-6455
[12] Pimentel, Victoria, and Bradford G. Nickerson. "Communicating and displaying real-time data with WebSocket." Internet Computing, IEEE 16.4 (2012): 45-53.
[13] The Apache Software Foundation. ” HBase – Apache HBase™ Home” http://hbase.apache.org/
[14] Chang, Fay, et al. "Bigtable: A distributed storage system for structured data."ACM Transactions on Computer Systems (TOCS) 26.2 (2008): 4.
[15] The Apache Software Foundation. “Welcome to Apache™ Hadoop®!” http://hadoop.apache.org/core/, 2009.
[16] Apache HBase Team. “Apache HBase ™ Reference Guide” http://hbase.apache.org/book.html#mapreduce
[17] Apache HBase Team. “Apache HBase ™ Reference Guide” http://hbase.apache.org/book.html#_architecture
[18] Lars George. “HBase Architecture 101 - Storage” http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html
[19] Apache HBase Team. “Apache HBase ™ Reference Guide” http://hbase.apache.org/book.html#arch.timelineconsistent.reads
[20] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data processing on large clusters." Communications of the ACM 51.1 (2008): 107-113.
[21] Caton, Simon, et al. "A social compute cloud: Allocating and sharing infrastructure resources via social networks." Services Computing, IEEE Transactions on 7.3 (2014): 359-372.
[22] Fang, Weiwei, et al. "VMPlanner: Optimizing virtual machine placement and traffic flow routing to reduce network power costs in cloud data centers."Computer Networks 57.1 (2013): 179-196.
[23] Wei, Wei, et al. "Dynamic correlative VM placement for quality-assured cloud service." Communications (ICC), 2013 IEEE International Conference on. IEEE, 2013.
[24] Gupta, Abhishek, Dejan Milojicic, and Laxmikant V. Kalé. "Optimizing VM Placement for HPC in the Cloud." Proceedings of the 2012 workshop on Cloud services, federation, and the 8th open cirrus summit. ACM, 2012.
[25] Xie, Jiong, et al. "Improving mapreduce performance through data placement in heterogeneous hadoop clusters." Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE International Symposium on. IEEE, 2010.
[26] He, Yongqiang, et al. "RCFile: A fast and space-efficient data placement structure in MapReduce-based warehouse systems." Data Engineering (ICDE), 2011 IEEE 27th International Conference on. IEEE, 2011.
[27] Chen, Kuan-yin, et al. "Intelligent virtual machine placement for cost efficiency in geo-distributed cloud systems." Communications (ICC), 2013 IEEE International Conference on. IEEE, 2013.
[28] Jiao, Lei, et al. "Multi-objective data placement for multi-cloud socially aware services." INFOCOM, 2014 Proceedings IEEE. IEEE, 2014.
[29] Facebook. “Facebook” https://www.facebook.com/
[30] W3C. “Geolocation API Specification” http://dev.w3.org/geo/api/spec-source.html
[31] Facebook. “Graph API” https://developers.facebook.com/docs/graph-api
[32] Lloyd, Stuart P. "Least squares quantization in PCM." Information Theory, IEEE Transactions on 28.2 (1982): 129-137.
[33] Wagstaff, Kiri, et al. "Constrained k-means clustering with background knowledge." ICML. Vol. 1. 2001.