| 研究生: |
卡亦 NGUYEN THI KIM ANH |
|---|---|
| 論文名稱: |
ELECTRO-OXIDATION OF ACID ORANGE 7 BY Ti/PbO2 MODIFIED ACTIVATED CARBON ELECTRODE ELECTRO-OXIDATION OF ACID ORANGE 7 BY Ti/PbO2 MODIFIED ACTIVATED CARBON ELECTRODE |
| 指導教授: |
秦靜如
Ching-Ju Monica Chin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 黑二氧化鈦 、孔洞擴散模式 、去除動力 |
| 外文關鍵詞: | black TiO2, intraparticle diffusion, degradation kinetics |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究製備Ti/PbO2以修飾活性碳電極 (Ti/PbO2/AC),做為電氧化的電極,以處理水中偶氮染料 (acid orange 7, AO7)。研究中對製備條件,如合成Ti/PbO2的TiO2濃度與Ti/PbO2與活性碳的比例,以及電吸附/氧化的處理條件,如pH, 濃度, 以及電場強度等進行探討,並且對所製備的電極進行表面分析,如比表面積/孔洞分布、表面晶相,以及表面官能基等分析。由於AO7的去除受電吸附與電氧化影響,且加入Ti/PbO2後可能增加了電催化的功能,OH自由基的存在有助於AO7的去除,因此當pH為10,外加電壓為1.2 V,AO7濃度為50 ppm時,有最佳的去除率。於同一條件下的與活性碳電極相比,活性碳電極與Ti/PbO2/AC電極的AO7去除率分別為85.9%與91.7%,顯示添加Ti/PbO2能夠提升AO7的去除能力。此外,由於活性碳的孔洞特性以及Ti/PbO2的催化能力,孔洞擴散模式與Langmuir-Hinshelwood 兩模式皆能夠解釋AO7去除的動力
In this study, the Ti/PbO2 composite was synthesized to modify AC electrodes. The AC electrodes and Ti/PbO2/AC electrodes are used for electrochemical oxidation of acid orange 7 (AO7). The surface chemistry of electrodes was analyzed by SEM, ASAP, FTIR and cyclic voltammetry. The effects of the spacing of anode and cathode, initial dye concentration, applied voltages, solution pH on the degradation of AO7 had been studied. Results revealed that at initial solution pH = 10, the spacing of anode and cathode of 3 mm, the applied voltage of 1.2 V, the initial AO7 concentration of 50 ppm the degradation efficiencies by AC and Ti/PbO2/AC electrode reached 85.90% and 91.70% , respectively after 720 min. It indicated that Ti/PbO2 composite has good catalytic effects on degradation of AO7. The reaction mechanism of electro-oxidation of AO7 degradation by Ti/PbO2/AC electrode might be involved the OH radical attack of dye molecules, and the degradation can be interpreted by the intra-particle diffusion kinetics model the Langmuir-Hinshelwood model.
Akazdam, S., Chafi, M., Yassine, W., Bouchaib, G., "Removal of Acid Orange 7 dye from aqueous solution using the exchange resin Amberlite FPA-98 as an efficient adsorbent: Kinetics, isotherms, and thermodynamics study", Journal of Materials and Environmental Sciences, 8, 2993-3012 (2017).
Aljeboree, A.M., Alshirifi, A.N., Alkaim, A.F., "Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon", Arabian Journal of Chemistry, 10, S3381-S3393 (2017).
Alves, C., Franca, A., Oliveira, L., "Evaluation of an adsorbent aased on agricultural waste (Corn Cobs) for removal of Tyrosine and Phenylalanine from aqueous solutions", BioMed Research International 2013, 978256 (2013).
Assadi, M.H.N., Hanaor, D.A.H., "The effects of copper doping on photocatalytic activity at (101) planes of anatase TiO2: A theoretical study", Applied Surface Science, 387, 682-689 (2016).
Barak, M., "Electrochemical power sources: primary and secondary batteries", Peter Peregrinus LTD., The Institution of Electrical Engineers, London and New York (1980).
Cardarelli, F., "Materials Handbook A Concise Desktop Reference", Electrochem Technologies & Materials Inc., Canada (2008).
Chen, D., Wang, L., Ma, Y., Yang, W., "Super-adsorbent material based on functional polymer particles with a multilevel porous structure", Npg Asia Materials, 8, e301 (2016).
Chen, G., "Electrochemical technologies in wastewater treatment", Separation and Purification Technology, 38, 11-41 (2004).
Chen, X., Chen, G., "Anodic oxidation of Orange II on Ti/BDD electrode: Variable effects", Separation and Purification Technology, 48, 45-49 (2006).
Cheng, M., Zeng, G., Huang, D., Lai, C., Xu, P., Zhang, C., Liu, Y., "Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review", Chemical Engineering Journal, 284, 582-598 (2016).
Chou, W.-L., Wang, C.-T., Chang, c.-p., "Comparison of removal of Acid Orange 7 by electrooxidation using various anode materials", Desalination, 266, 201-207 (2011).
Dehghani, M.H., Karimi, B., Rajaei, M.S., "The effect of aeration on advanced coagulation, flotation and advanced oxidation processes for color removal from wastewater", Journal of Molecular Liquids, 223, 75-80 (2016).
Deng, Y., Zhao, R., "Advanced Oxidation Processes (AOPs) in Wastewater Treatment", Current Pollution Reports, 1, 167-176 (2015).
Duan, F., Du, X., Li, Y., Cao, H., Zhang, Y., "Desalination stability of capacitive deionization using ordered mesoporous carbon: Effect of oxygen-containing surface groups and pore properties", Desalination, 376, 17-24 (2015).
Frackowiak, E., Béguin, F., "Carbon materials for the electrochemical storage of energy in capacitors", Carbon, 39, 937-950 (2001).
Ghalwa, N.A., Gaber, M., Khedr, A.M., Salem, M.F., " Comparative study of commercial oxide electrodes per-formance in electrochemical degradation of Reactive Orange 7 dye in aqueous solution", International Journal of Electrochemical Science, 2012, 6044 - 6058 (2012).
Govindaraj, D., Nambi, I., Jaganathan, S., "Nanocatalysts in Fenton based Advanced Oxidation Process for water and wastewater treatment", Journal of Bionanoscience, 10, 356-368 (2016).
Greenwood, N.N., Earnshaw, A., "Chemistry of the elements", Butterworth-Heinemann, Oxford (1997).
Harada, H., Sasa, Y., Uda, M., "Crystal data for Beta-PbO2", Journal of Applied Crystallography, 14, 141-142 (1981).
Hassaan, M., El Nemr, A., "Advanced Oxidation Processes for Textile Wastewater Treatment", International Journal of Photochemistry and Photobiology, 2, 85-93 (2017).
Hirakawa, T., Nosaka, Y., "Properties of O2•- and OH• formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions", Langmuir, 18, 3247-3254 (2002).
Ho, M.Y., Khiew, P.S., Isa, D., Tan, T.K., Chiu, W.S., Chia, C.H., "A review of metal oxide composite electrode materials for electrochemical capacitors", Nano, 09, 1430002 (1-25) (2014).
Jayalakshmy, M.S., Philip, J., "Enhancement in pyroelectric detection sensitivity for flexible LiNbO3/PVDF nanocomposite films by inclusion content control", Journal of Polymer Research, 22, 1-11 (2015).
Jović, M., Stanković, D., Manojlović, D., Andjelkovic, I., Milić, A., Dojcinovic, B., Roglic, G., "Study of the electrochemical oxidation of Reactive Textile Dyes using Platinum Electrode", International journal of electrochemical science, 8, 168-183 (2013).
Kandasamy, R., Muthuchamy, M., "Optimisation of Electro-oxidation Process for the Treatment of Reactive Orange 107 using Response Surface Methodology", Environmental Science and Pollution Research, 18, (2011).
Kapałka, A., Fóti, G., Comninellis, C., "Basic principles of the electrochemical mineralization of organic pollutants for wastewater treatment", Electrochemistry for the Environment, Springer, New York (2009).
Konstantinou, I.K., Albanis, T.A., "TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review", Applied Catalysis B: Environmental, 49, 1-14 (2004).
Kumar, K.V., Porkodi, K., Rocha, F., "Langmuir–Hinshelwood kinetics – A theoretical study", Catalysis Communications, 9, 82-84 (2008).
Kusmierek, E., Chrzescijanska, E., Szadkowska-Nicze, M., Kałużna-Czaplińska, J., "Electrochemical discolouration and degradation of reactive dichlorotriazine dyes: Reaction pathways", Journal of Applied Electrochemistry, 41, 51-62 (2010).
Li, N., Ma, X., Zha, Q., Kim, K., Chen, Y., Song, C., "Maximizing the number of oxygen-containing functional groups on activated carbon by using ammonium persulfate and improving the temperature-programmed desorption characterization of carbon surface chemistry", Carbon, 49, 5002-5013 (2011a).
Li, W., Yue, Q., Tu, P., Ma, Z., Gao, B., Li, J., Xu, X., "Adsorption characteristics of dyes in columns of activated carbon prepared from paper mill sewage sludge", Chemical Engineering Journal, 178, 197-203 (2011b).
Li, X., Wu, Y., Zhu, W., Xue, F., Qian, Y., Wang, C., "Enhanced electrochemical oxidation of synthetic dyeing wastewater using SnO2-Sb-doped TiO2-coated granular activated carbon electrodes with high hydroxyl radical yields", Electrochimica Acta, 220, 276-284 (2016).
Meek, T.L., Garner, L.D., "Electronegativity and the Bond Triangle", Journal of Chemical Education, 82, 325 (2005).
Moreira, F.C., Boaventura, R.A.R., Brillas, E., Vilar, V.J.P., "Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters", Applied Catalysis B: Environmental, 202, 217-261 (2017).
Nurhayati, E., "A Brief Review on Electro-generated Hydroxyl Radical for Organic Wastewater Mineralization", Jurnal Sains &Teknologi Lingkungan, 4, 24-31 (2012).
Órfão, J.J.M., Silva, A.I.M., Pereira, J.C.V., Barata, S.A., Fonseca, I.M., Faria, P.C.C., Pereira, M.F.R., "Adsorption of a reactive dye on chemically modified activated carbons—Influence of pH", Journal of Colloid and Interface Science, 296, 480-489 (2006).
Pavithra, M.P., "Electrochemical oxidation of dye by using Graphite and Titanium based electrodes", International Journal of Advances in Scientific Research and Engineering, 3, 247-255 (2017).
Pera-Titus, M., Garcı́a-Molina, V., Baños, M.A., Giménez, J., Esplugas, S., "Degradation of chlorophenols by means of advanced oxidation processes: a general review", Applied Catalysis B: Environmental, 47, 219-256 (2004).
Pham Anh, T., Isosaari, P., Sillanpää, M., "Sewage sludge electro-dewatering treatment-A review", Drying Technology: An International Journal, 30, 691–706 (2012).
Pillai, K., Joon Chung, S., Moon, I., "Studies on electrochemical recovery of silver from simulated waste water from Ag(II)/Ag(I) based mediated electrochemical oxidation process", Chemosphere, 73, 1505-11 (2008).
Ponmani, K., Durga, S., Arun, A., s, K., Muthukumaran, B., "Development of membraneless sodium perborate fuel cell for media flexible power generation", International Journal of Electrochemistry, 2014, 1-9 (2014).
Qian, W.-C., Luo, X.-P., Wang, X., Guo, M., Li, B., "Removal of methylene blue from aqueous solution by modified bamboo hydrochar", Ecotoxicology and environmental safety, 157, 300-306 (2018).
Qiao, Q., Singh, S., Lo, S.-L., Li, Y., Jin, J., Wang, L., "Electrochemical oxidation of acid orange 7 dye with Ce, Nd, and Co-modified PbO2 electrodes: Preparation, characterization, optimization, and mineralization", Journal of the Taiwan Institute of Chemical Engineers, 84, 110-122 (2018).
Qiu, Y., Zheng, Z., Zhou, Z., Sheng, G.D., "Effectiveness and mechanisms of dye adsorption on a straw-based biochar", Bioresource Technology, 100, 5348-5351 (2009).
Särkkä, H., Bhatnagar, A., Sillanpää, M., "Recent developments of electro-oxidation in water treatment — A review", Journal of Electroanalytical Chemistry, 754, 46-56 (2015).
Shahul Hameed, K., Muthirulan, P., Meenakshi Sundaram, M., "Adsorption of chromotrope dye onto activated carbons obtained from the seeds of various plants: Equilibrium and kinetics studies", Arabian Journal of Chemistry, 10, S2225-S2233 (2017).
Simonin, J.-P., "On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics", Chemical Engineering Journal, 300, 254-263 (2016).
Sirés, I., Brillas, E., "Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review", Environment International, 40, 212-229 (2012).
Srimuk, P., Zeiger, M., Jäckel, N., Tolosa, A., Krüner, B., Fleischmann, S., Grobelsek, I., Aslan, M., Shvartsev, B., Suss, M.E., Presser, V., "Enhanced performance stability of carbon/titania hybrid electrodes during capacitive deionization of oxygen saturated saline water", Electrochimica Acta, 224, 314-328 (2017).
Srinivasu, P., Singh, S., Islam, A., Han, L., "Novel Approach for the Synthesis of Nanocrystalline Anatase Titania and Their Photovoltaic Application", Advances in OptoElectronics, 2011, 1-5 (2011).
Taggart, J.E., Foord, E.E., Rosenzweig, A., Hanson, T., "Scrutinyite, natural occurrences of alpha PbO2 from Bingham, New Mexico, U.S.A., and Mapimi, Mexico", The Canadian Mineralogist, 26, 905-910 (1988).
Tareq, R., Akter, N., Azam, M.S., "Chapter 10 - Biochars and Biochar Composites: Low-Cost Adsorbents for Environmental Remediation", Elsevier, (2019).
Tomlinson, A., Scherer, B., Karakosta, E., Oakey, M., Danks, T.N., Heyes, D.M., Taylor, S.E., "Adsorption properties of succinimide dispersants on carbonaceous substrates", Carbon, 38, 13-28 (2000).
Wang, C., Wang, F., Xu, M., Zhu, C., Fang, W., Wei, Y., "Electrocatalytic degradation of methylene blue on Co doped Ti/TiO2 nanotube/PbO2 anodes prepared by pulse electrodeposition", Journal of Electroanalytical Chemistry, 759, 158-166 (2015).
Wang, J., Jin Xu, L.E., "Advanced Oxidation Processes for wastewater treatment: formation of hydroxyl radical and application", Critical Reviews in Environmental Science and Technology, 42, 251-325 (2012).
Wang, Y., Xia, Y., "Recent progress in supercapacitors: from materials design to system construction", Advanced Materials, 25, 5336-5342 (2013).
Weng, C.-H., Pan, Y.-F., "Adsorption characteristics of methylene blue from aqueous solution by sludge ash", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 274, 154-162 (2006).
Wu, F.-C., Tseng, R.-L., Juang, R.-S., "Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics", Chemical Engineering Journal, 153, 1-8 (2009).
Xu, H., Gao, B., Cao, H., Chen, X., Yu, L., Wu, K.M., Sun, L., Peng, X., Fu, J., "Nanoporous activated carbon derived from rice husk for high performance supercapacitor", Journal of Nanomaterials, 2014, 1-7 (2014).
Xu, X.-R., Li, X.-Z., "Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion", Separation and Purification Technology, 72, 105-111 (2010).
Yakout, S.M., Sharaf El-Deen, G., "Characterization of activated carbon prepared by phosphoric acid activation of olive stones", Arabian Journal of Chemistry, 9, S1155-S1162 (2016).
Yao, Y.W., Cui, L.H., Li, Y., Yu, N.C., Dong, H.S., Chen, X., Wei, F., "Electrocatalytic degradation of methyl Orange on PbO2-TiO2 nanocomposite electrodes", International Journal of Environmental Research, 9, 1357-1364 (2015).
Yi, F., Chen, S., "Electrochemical treatment of alizarin red S dye wastewater using an activated carbon fiber as anode material", Journal of Porous Materials, 15, 565-569 (2008).
Yi, F., Chen, S., Yuan, C.e., "Effect of activated carbon fiber anode structure and electrolysis conditions on electrochemical degradation of dye wastewater", Journal of Hazardous Materials, 157, 79-87 (2008).
Zaleska-Medynska, A., "Phtocatalytic activity and surface properties of carbon-doped titanium dioxide", Physicochemical Problems of Mineral Processing, 43, 21-30 (2009).
Zhang, F., Feng, C., Li, W., Cui, J., "Indirect electrochemical oxidation of dye wastewater containing Acid Orange 7 using Ti/RuO2-Pt electrode", International Journal of Electrochemical Science, 9, 943-954 (2014).
Zhang, Y., Zhuang, Y., Geng, J., Ren, H., Xu, K., Ding, L., "Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes", Science of The Total Environment, 550, 184-191 (2016).
Zhao, R., Biesheuvel, M., Miedema, H., Bruning, H., van der Wal, A., "Charge Efficiency: A functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization", Journal of Physical Chemistry Letters, 1, 205-210 (2010).
Zhu, L.Y., Tian, Y.H., Li, M.L., Ma, H.C., Ma, C., Dong, X.L., Zhang, X.F., "Fabrication and photo-electrocatalytic activity of black TiO2 embedded Ti/PbO2 electrode", Journal of Applied Electrochemistry, 47, 1045-1056 (2017).