跳到主要內容

簡易檢索 / 詳目顯示

研究生: 戴維莎
Thavisha Erandinie Dharmawardena
論文名稱: 利用冷塵埃的熱輻射追蹤主序後星質量 流失歷史
Tracing Historic Mass Loss from Evolved Stars with Thermal Emission from Cold Dust
指導教授: 高仲明
Prof. Chung-Ming Ko
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 189
中文關鍵詞: 進化的恆星散熱粉塵質量損失率亞毫米波
外文關鍵詞: Evolved stars, Thermal dust emission, Mass loss, sub-mm
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 主序後星在宇宙塵埃的生命週期中扮演關鍵角色。由於主序後星數量眾多, 因此能有
    效率的透過強恆星風和超新星噴發其核心中合成的原料,並以此提供星際介質中的重
    元素。在這篇論文中,我研究了主序後星的質量流失,深入研究並探索它們過去一生
    中的塵埃質量流失事件。主序後星的典型研究方法是僅考慮當前的質量流失,或假設
    它們在其生命週期中經歷近似穩定的質量流失。塵埃從恆星中心離開時會冷卻,可以
    利用塵埃的熱輻射有效地追其質量流失歷程。本論文使用Herschel / PACS遠紅外望遠
    鏡(波長70微米、100微米和160微米)和JCMT / SCUBA-2次毫米波望遠鏡(450微米
    和850微米)來觀測。這兩組觀測結果非常強大,可追主序後星周圍包層的徑向變化。
    本論文透過觀察研究表面亮度、溫度、塵埃質量- 柱密度和徑向的塵埃輻射率光譜指
    數中的特徵,確定了銀河系主序後星取樣的質量流失變化。將這些結果與恆定流出模
    型的預測進行比較,本論文發現此兩種情景決定的總塵埃質量間有顯著偏差。因此進
    一步顯示了質量流失變化的影響不容忽視。本論文利用輻射轉移模型確定了唧筒座U星
    的分離殼層複雜性,並指出進一步研究的需要。兩個著名主序後星IRC + 10216和鯨魚
    座o 星的次毫米波週期的分析顯示,可能可使用主序後星的次毫米波光變曲線來有效研
    究它們包層內部的塵埃形成和分解性質。IRC + 10216顯示可見光和次毫米觀測的偏移
    相位約為3/4。使用模型預測和過去的報告,顯示恆星脈衝和塵埃形成/分解之間的關
    係。這篇論文包含了位於銀河系及麥哲倫雲星系,在中紅外波段觀測到但遠紅外波段
    沒有觀測到的主序後星。由Herschel HERITAGE普查計劃,波長為100微米的調查,可
    以對這些主序後星中冷塵埃的遠紅外波段成份存在與否進行統計研究。本論文成功提
    出由最高質量流失率來源組成的三疊檢測,展示了堆疊法的優點。本論文展示結構的
    變化率及質量流失歷程,並強調這些在銀河系及之外的天體,分析研究其塵埃產生的
    重要性。


    Evolved stars play a key role in the life cycle of dust in the universe. Through strong
    winds and supernovae they inject the material reprocessed in their cores to the interstellar
    medium, replenishing the interstellar medium with heavy elements. As evolved stars are
    so numerous they are extremely e ective in this role. In this thesis we study this mass loss
    delving deep into their past, exploring dust mass-loss events which occurred throughout
    their lifetime as evolved stars. The typical treatment of evolved stars has been to only
    account for present day mass loss or assume they are quasi-stable undergoing constant
    mass loss throughout their lifetime. Historic mass loss can be e ectively traced using
    thermal emission from the dust which cools down as it moves away from the central star.
    We exploit Herschel/PACS far-infrared (70 m; 100 m and 160 m) and JCMT/SCUBA-
    2 sub-millimetre (450 m and 850 m) observations to study this historic mass loss.
    These two sets of observations are especially powerful, tracing the radial variation in
    the circumstellar envelopes of evolved stars. We establish the presence of variations in
    mass loss for a sample of Milky Way evolved stars by studying features observed in
    surface-brightness, temperature, dust mass-column density and spectral index of dust
    emissivity radial pro les. By comparing these results to predictions for a constant-out
    ow
    model we nd signi cant deviations between the total dust masses determined for the
    two scenarios, demonstrating that the e ect of mass-loss variations cannot be ignored.
    We determine the complexities of the detached shell of U Ant with the aid of radiative
    transfer modelling, prompting the need for further study at higher angular resolution.
    The analysis of the sub-mm periodicity of IRC+10216 and o Ceti, two well-known evolved
    stars, shows that it may be possible to use sub-mm light curves of evolved stars to study
    the nature of dust formation/destruction in their inner envelope e ectively. The optical and sub-mm light curves of IRC+10216 shows an o set in phase of  3=4. Using radiative
    transfer modelling as well as ndings in literature we attribute the sub-mm variability and
    phase lag to both the relationship between stellar pulse and dust formation/destruction
    cycle as well as a second unknown mechanism which needs to be narrowed down in the
    future. Moving on from the Milky Way to the Magellanic clouds we combine cutouts of
    evolved stars identi ed in the mid-infrared but not detected in the far-IR. The cutouts are
    generated from the Herschel HERITAGE survey at 100 m allowing a statistical study of
    the existence or absence of a far-IR component as a result of cold dust in these evolved
    stars. We successfully produce detections for three stacks comprised of the highest massloss
    rate sources, showcasing the merits of the stacking method. With this thesis we
    emphasise the variations in structure and hence historic mass loss of evolved stars. By
    doing so we highlight the importance of including these variations in studies which include
    dust production by evolved stars in the future.

    電子論文授權書Authorisation of the Electronic Thesis i 指導教授推薦書Recommendation Letter from the Thesis Advisor iii 試委員審定書Verification from the Oral Examination Committee v 英文摘要Abstract in English vii 中文摘要Abstract in Chinese ix 誌謝Acknowledgements xi 出版物清單List of Publications xiii List of Figures xix List of Tables xxi 1 Introduction 1 2 Extended Dust Emission from Nearby Evolved Stars 11 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Observations and Data Reduction . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.1 Source selection and SCUBA-2 observations . . . . . . . . . . . . . 15 2.2.2 SCUBA-2 data reduction . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.3 IRC+10216 (CW Leo) and o Cet (Mira) SCUBA-2 data reduction . 18 2.2.4 Herschel PACS data . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 Extended Dust Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.1 Surface-brightness pro_les . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.2 Spectral Energy Distribution _ts . . . . . . . . . . . . . . . . . . . 23 2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.1 Extent and ux levels of the thermal dust emission . . . . . . . . . 25 2.4.2 Radial variation in dust properties . . . . . . . . . . . . . . . . . . 30 2.4.2.1 Radial Variation in _ . . . . . . . . . . . . . . . . . . . . . 30 2.4.2.2 Temperature Radial Variation . . . . . . . . . . . . . . . . 32 2.4.2.3 Radial variation in the dust column density . . . . . . . . 33 2.4.3 Notes on selected sources . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4.3.1 NML Cyg . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4.3.2 IRC+10216 . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.4.3.3 U Hya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.4.4 Dust mass-loss Rates and Dust-to-Gas Ratios . . . . . . . . . . . . 40 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3 The Nearby Evolved Stars Survey: I. JCMT/SCUBA-2 Sub-millimetre detection of the detached shell of U Antliae 49 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2 Observations and Data Reduction . . . . . . . . . . . . . . . . . . . . . . . 54 3.2.1 Removing CO(3-2) Contamination . . . . . . . . . . . . . . . . . . 55 3.2.2 Archival Herschel observations . . . . . . . . . . . . . . . . . . . . . 55 3.3 Analysis and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.3.1 Surface-brightness Pro_les . . . . . . . . . . . . . . . . . . . . . . . 56 3.3.2 Shell Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.3.2.1 Radial point-to-point Spectral Energy Distribution Fitting 60 3.3.2.2 Full Radiative Transfer Modelling . . . . . . . . . . . . . . 61 3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.4.1 Surface-brightness emission . . . . . . . . . . . . . . . . . . . . . . 65 3.4.2 Radial variation in dust properties . . . . . . . . . . . . . . . . . . 68 3.4.3 Self-consistent dust radiative transfer modelling . . . . . . . . . . . 70 3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4 Sub-mm Variability of IRC+10216 and o Ceti 77 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.1 Observations and Data Reduction . . . . . . . . . . . . . . . . . . . 80 4.2.2 PSF Photometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.3.1 Light Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.3.2 Sub-mm Periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.4.1 Periodograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.4.2 Periods and Phase folded Light Curves . . . . . . . . . . . . . . . . 88 4.5 Origins the Sub-mm Variability and Phase-lag . . . . . . . . . . . . . . . . 90 4.5.1 Light Travel Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.5.2 Molecular Line Contamination . . . . . . . . . . . . . . . . . . . . . 90 4.5.3 Cycle of Dust Formation and Destruction . . . . . . . . . . . . . . . 92 4.5.3.1 Radiative Transfer Modelling of IRC+10216 . . . . . . . . 92 4.5.4 Free-free emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5 Stacking analysis of the Herschel/HERITAGE data to statistically study far-IR dust emission from evolved stars in the Large Magellanic Cloud 99 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2 Observations and Methodology . . . . . . . . . . . . . . . . . . . . . . . . 102 5.2.1 Removal of Contaminants and Selection of Stacking Categories . . . 102 5.2.2 Generating Cutouts and Stacking . . . . . . . . . . . . . . . . . . . 103 5.2.3 PSF Photometry and GRAMS predicted fluxes . . . . . . . . . . . 104 5.3 Preliminary Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 106 5.3.1 Photometric Results and Comparison to Model Predictions . . . . . 106 5.3.2 8 vs. 8 􀀀 24 Colour Magnitude Diagram . . . . . . . . . . . . . . . 110 5.4 Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6 Conclusion 115 A Fitting radial SEDs with MCMC 131 B Supplementary Figures for Chapter 2 135 C Published Shell Radii and Schematic Diagram of U Ant 149 D CO 3-2 subtraction 151 E Observed global SED fluxes of U Ant 153 F SCUBA observations from 1997 155 G Supplementary Figures for Chapter 4 157

    Arimatsu K., Izumiura H., Ueta T., Yamamura I., Onaka T., 2011, ApJ, 729, L19
    Aringer B., Girardi L., Nowotny W., Marigo P., Lederer M. T., 2009, A&A, 503, 913
    Balog Z., et al., 2014, Experimental Astronomy, 37, 129
    Beichman C. A., Neugebauer G., Habing H. J., Clegg P. E., Chester T. J., eds, 1988,
    Infrared astronomical satellite (IRAS) catalogs and atlases. Volume 1: Explanatory
    supplement Vol. 1
    Bianchi S., Schneider R., 2007, MNRAS, 378, 973
    Bladh S., 2019, arXiv e-prints,
    Bocchio M., Bianchi S., Abergel A., 2016, A&A, 591, A117
    Bowen G. H., Willson L. A., 1991, ApJ, 375, L53
    Boyer M. L., et al., 2012, ApJ, 748, 40
    Boyer M. L., et al., 2017, ApJ, 851, 152
    Bradley L., et al., 2016, astropy/photutils: v0.3, doi:10.5281/zenodo.164986, https://
    doi.org/10.5281/zenodo.164986
    Cernicharo J., et al., 2014, ApJ, 796, L21
    Cernicharo J., Marcelino N., Agundez M., Guelin M., 2015, A&A, 575, A91
    Chapin E. L., Berry D. S., Gibb A. G., Jenness T., Scott D., Tilanus R. P. J., Economou
    F., Holland W. S., 2013, MNRAS, 430, 2545
    Cox N. L. J., et al., 2012, A&A, 537, A35
    Currie M. J., Berry D. S., Jenness T., Gibb A. G., Bell G. S., Draper P. W., 2014, in
    Manset N., Forshay P., eds, Astronomical Society of the Paci c Conference Series Vol.
    485, Astronomical Data Analysis Software and Systems XXIII. p. 391
    Cutri R. M., et al. 2012, VizieR Online Data Catalog, p. II/311
    Danilovich T., et al., 2015, A&A, 581, A60
    De Beck E., Decin L., de Koter A., Justtanont K., Verhoelst T., Kemper F., Menten
    K. M., 2010, A&A, 523, A18
    De Beck E., et al., 2012, A&A, 539, A108
    Decin L., Hony S., De Koter A., Molenberghs G., Dehaes S., Markwick-Kemper F., 2007,
    A&A, 475, 233
    Decin L., et al., 2011, A&A, 534, A1
    Decin L., et al., 2019, Nature Astronomy, 3, 408
    Dehaes S., Groenewegen M. A. T., Decin L., Hony S., Raskin G., Blommaert J. A. D. L.,
    2007, MNRAS, 377, 931
    Dempsey J. T., et al., 2013, MNRAS, 430, 2534
    Dharmawardena T. E., et al., 2018, Monthly Notices of the Royal Astronomical Society,
    479, 536
    Di Criscienzo M., et al., 2016, MNRAS, 462, 395
    Doi Y., et al., 2009, in Heras A. M., Swinyard B. M., Isaak K. G., Goicoechea J. R., eds,
    The Next-Generation Infrared Space Mission: SPICA. p. 04018 (arXiv:0911.5196),
    doi:10.1051/spica/200904018
    Doi Y., et al., 2015, PASJ, 67, 50
    Doty S. D., Leung C. M., 1994, ApJ, 424, 729
    Drabek E., et al., 2012, MNRAS, 426, 23
    Draine B. T., 2016, ApJ, 831, 109
    Drake A. J., et al., 2014, ApJS, 213, 9
    Dyck H. M., Benson J. A., Howell R. R., Joyce R. R., Leinert C., 1991, AJ, 102, 200
    Ekstrom S., et al., 2012, A&A, 537, A146
    Elvis M., Marengo M., Karovska M., 2002, ApJ, 567, L107
    Eriksson K., Nowotny W., Hofner S., Aringer B., Wachter A., 2014, A&A, 566, A95
    Ertel S., et al., 2014, A&A, 561, A114
    Fixsen D. J., 2009, ApJ, 707, 916
    Fonfra J. P., et al., 2018, ApJ, 860, 162
    Foreman-Mackey D., Hogg D. W., Lang D., Goodman J., 2013, PASP, 125, 306
    Fraser M., et al., 2014, MNRAS, 439, L56
    Fulvio D., Gobi S., Jager C., Kereszturi A., Henning T., 2017, ApJS, 233, 14
    Gaia Collaboration et al., 2018, A&A, 616, A1
    Gall C., Hjorth J., Andersen A. C., 2011, A&A Rev., 19, 43
    Goldman S. R., et al., 2017, MNRAS, 465, 403
    Gonzaga S., et al. 2012, The DrizzlePac Handbook
    Gonzalez Delgado D., Olofsson H., Schwarz H. E., Eriksson K., Gustafsson B., 2001, A&A,
    372, 885
    Gonzalez Delgado D., Olofsson H., Schwarz H. E., Eriksson K., Gustafsson B., Gledhill
    T., 2003, A&A, 399, 1021
    Gordon K. D., et al., 2014, ApJ, 797, 85
    Grin M. J., et al., 2010, A&A, 518, L3
    Groenewegen M. A. T., et al., 2011, A&A, 526, A162
    Groenewegen M. A. T., et al., 2012, A&A, 543, L8
    Gruendl R. A., Chu Y.-H., Seale J. P., Matsuura M., Speck A. K., Sloan G. C., Looney
    L. W., 2008, ApJ, 688, L9
    Guandalini R., Busso M., 2008, A&A, 488, 675
    Habing H. J., Olofsson H., eds, 2003, Asymptotic giant branch stars
    He S., Yuan W., Huang J. Z., Long J., Macri L. M., 2016, AJ, 152, 164
    He J. H., Dinh-V-Trung Hasegawa T. I., 2017, ApJ, 845, 38
    Hengst S., Marshall J. P., Horner J., Marsden S. C., 2017, MNRAS, 468, 4725
    Hildebrand R. H., 1983, QJRAS, 24, 267
    Hofner S., 2008, A&A, 491, L1
    Hofner S., Olofsson H., 2018, A&A Rev., 26, 1
    Hogg D. W., Bovy J., Lang D., 2010, preprint, (arXiv:1008.4686)
    Holland W. S., et al., 2013, MNRAS, 430, 2513
    Huijse P., Estevez P. A., Forster F., Daniel S. F., Connolly A. J., Protopapas P., Carrasco
    R., Principe J. C., 2018, ApJS, 236, 12
    Ishihara D., et al., 2010, A&A, 514, A1
    Izumiura H., Hashimoto O., Kawara K., Yamamura I., Waters L. B. F. M., 1996, A&A,
    315, L221
    Izumiura H., Waters L. B. F. M., de Jong T., Loup C., Bontekoe T. R., Kester D. J. M.,
    1997, A&A, 323, 449
    Izumiura H., et al., 2009, in Onaka T., White G. J., Nakagawa T., Yamamura I., eds,
    Astronomical Society of the Paci c Conference Series Vol. 418, AKARI, a Light to
    Illuminate the Misty Universe. p. 127
    Izumiura H., et al., 2011, A&A, 528, A29
    Javadi A., van Loon J. T., Khosroshahi H., Mirtorabi M. T., 2013, MNRAS, 432, 2824
    Jenness T., Economou F., 2015, Astronomy and Computing, 9, 40
    Jenness T., Stevens J. A., Archibald E. N., Economou F., Jessop N. E., Robson E. I.,
    2002, MNRAS, 336, 14
    Jones A. P., 2001, Philosophical Trans. R. Soc. Lond. A, 359, 1961
    Jones A. P., Fanciullo L., Kohler M., Verstraete L., Guillet V., Bocchio M., Ysard N.,
    2013, A&A, 558, A62
    Jones O. C., McDonald I., Rich R. M., Kemper F., Boyer M. L., Zijlstra A. A., Bendo
    G. J., 2015a, MNRAS, 446, 1584
    Jones O. C., Meixner M., Sargent B. A., Boyer M. L., Sewi lo M., Hony S., Roman-Duval
    J., 2015b, ApJ, 811, 145
    Jura M., Kleinmann S. G., 1989, ApJ, 341, 359
    Karakas A. I., 2014, in Feltzing S., Zhao G., Walton N. A., Whitelock P., eds,
    IAU Symposium Vol. 298, Setting the scene for Gaia and LAMOST. pp 142{153,
    doi:10.1017/S1743921313006315
    Kelly B. C., Shetty R., Stutz A. M., Kau mann J., Goodman A. A., Launhardt R., 2012,
    ApJ, 752, 55
    Kennedy G. M., Wyatt M. C., Sibthorpe B., Phillips N. M., Matthews B. C., Greaves
    J. S., 2012, MNRAS, 426, 2115
    Kerschbaum F., et al., 2010, Astronomy and Astrophysics
    Kerschbaum F., et al., 2017, A&A, 605, A116
    Kim S.-H., Martin P. G., Hendry P. D., 1994, ApJ, 422, 164
    Kim H., Lee H.-G., Mauron N., Chu Y.-H., 2015, ApJ, 804, L10
    Knapp G. R., Morris M., 1985, ApJ, 292, 640
    Ladjal D., Justtanont K., Groenewegen M. A. T., Blommaert J. A. D. L., Waelkens C.,
    Barlow M. J., 2010, A&A, 513, A53
    Lattanzio J., Frost C., Cannon R., Wood P. R., 1996, Mem. Soc. Astron. Italiana, 67, 729
    Le Bertre T., 1992, A&AS, 94, 377
    Liseau R., et al., 2010, A&A, 518, L132
    Lomb N. R., 1976, Ap&SS, 39, 447
    Maercker M., Olofsson H., Eriksson K., Gustafsson B., Schoier F. L., 2010, A&A, 511,
    A37
    Maercker M., et al., 2012, Nature, 490, 232
    Maercker M., Silva T. K., Beck E. D., Brunner M., Mecina M., Jaldehag O., 2018, A&A
    Mairs S., et al., 2017, ApJ, 843, 55
    Marengo M., Ivezic Z., Knapp G. R., 2001, MNRAS, 324, 1117
    Marigo P., et al., 2017, ApJ, 835, 77
    Marshall J. P., et al., 2011, A&A, 529, A117
    Marshall J. P., et al., 2014, A&A, 570, A114
    Marshall J. P., Booth M., Holland W., Matthews B. C., Greaves J. S., Zuckerman B.,
    2016, MNRAS, 459, 2893
    Matsuura M., et al., 2009, MNRAS, 396, 918
    Mattsson L., Hofner S., Herwig F., 2007, A&A, 470, 339
    Mauron N., Huggins P. J., Cheung C.-L., 2013, A&A, 551, A110
    Mayer A., et al., 2013, A&A, 549, A69
    McDonald I., Trabucchi M., 2019, MNRAS, 484, 4678
    McDonald I., Zijlstra A. A., Watson R. A., 2017, MNRAS, 471, 770
    Meixner M., et al., 2006, AJ, 132, 2268
    Meixner M., et al., 2013, AJ, 146, 62
    Mennella V., Brucato J. R., Colangeli L., Palumbo P., Rotundi A., Bussoletti E., 1998,
    ApJ, 496, 1058
    Menten K. M., Reid M. J., Krugel E., Claussen M. J., Sahai R., 2006, A&A, 453, 301
    Menten K. M., Reid M. J., Kaminski T., Claussen M. J., 2012, A&A, 543, A73
    Meynet G., et al., 2015, A&A, 575, A60
    Miettinen O., et al., 2015, A&A, 584, A32
    Morgan H. L., Edmunds M. G., 2003, MNRAS, 343, 427
    Murdin P., Murdin L., 1985, Supernovae
    Neugebauer G., et al., 1984, ApJ, 278, L1
    Olofsson H., Eriksson K., Gustafsson B., 1988, A&A, 196, L1
    Olofsson H., Carlstrom U., Eriksson K., Gustafsson B., Willson L. A., 1990, A&A, 230,
    L13
    Olofsson H., Bergman P., Eriksson K., Gustafsson B., 1996, A&A, 311, 587
    Olofsson H., Maercker M., Eriksson K., Gustafsson B., Schoier F., 2010, A&A, 515, A27
    Ossenkopf V., Henning T., Mathis J. S., 1992, A&A, 261, 567
    Pardo J. R., et al., 2018, A&A, 615, L4
    Parsons H., et al., 2018, ApJS, 234, 22
    Pegourie B., 1988, A&A, 194, 335
    Planck Collaboration et al., 2014, A&A, 571, A11
    Poglitsch A., et al., 2010, A&A, 518, L2
    Pols O. R., Tout C. A., Lattanzio J. C., Karakas A. I., 2001, in Podsiadlowski P., Rappaport
    S., King A. R., D'Antona F., Burderi L., eds, Astronomical Society of the Paci c
    Conference Series Vol. 229, Evolution of Binary and Multiple Star Systems. p. 31
    Pope A., et al., 2008, ApJ, 689, 127
    Principe J. C., 2010, Information Theoretic Learning: Renyi's Entropy and Kernel Perspectives,
    1st edn. Springer Publishing Company, Incorporated
    Ramstedt S., Maercker M., Olofsson G., Olofsson H., Schoier F. L., 2011, A&A, 531, A148
    Ramstedt S., et al., 2017, A&A, 605, A126
    Reimann J. D., 1994, PhD thesis, UNIVERSITY OF CALIFORNIA, BERKELEY.
    Reynolds T. M., Fraser M., Gilmore G., 2015, MNRAS, 453, 2885
    Riebel D., Srinivasan S., Sargent B., Meixner M., 2012, ApJ, 753, 71
    Robitaille T. P., 2011, A&A, 536, A79
    Rodighiero G., et al., 2010, A&A, 518, L25
    Rodrigo C., Solano E., Bayo A., 2012, SVO Filter Pro le Service Version 1.0, IVOA
    Working Draft 15 October 2012
    Rowlands K., Gomez H. L., Dunne L., Aragon-Salamanca A., Dye S., Maddox S., da
    Cunha E., van der Werf P., 2014, MNRAS, 441, 1040
    Sadavoy S. I., et al., 2013, ApJ, 767, 126
    Sargent B. A., Srinivasan S., Meixner M., 2011, ApJ, 728, 93
    Scargle J. D., 1982, ApJ, 263, 835
    Schneider R., Valiante R., Ventura P., dell'Agli F., Di Criscienzo M., Hirashita H., Kemper
    F., 2014, MNRAS, 442, 1440
    Schoier F. L., Lindqvist M., Olofsson H., 2005, A&A, 436, 633
    Schreiber C., et al., 2015, A&A, 575, A74
    Schuster M. T., Humphreys R. M., Marengo M., 2006, AJ, 131, 603
    Seale J. P., et al., 2014, AJ, 148, 124
    Shenavrin V. I., Taranova O. G., Nadzhip A. E., 2011, Astronomy Reports, 55, 31
    Shetty R., Kau mann J., Schnee S., Goodman A. A., Ercolano B., 2009, ApJ, 696, 2234
    Silverman B. W., 1986, Density estimation for statistics and data analysis
    Simis Y. J. W., Icke V., Dominik C., 2001, A&A, 371, 205
    Skrutskie M. F., et al., 2006, AJ, 131, 1163
    Smith B. J., Price S. D., Baker R. I., 2004, ApJS, 154, 673
    Smith M. W. L., et al., 2012, ApJ, 756, 40
    Srinivasan S., Sargent B. A., Meixner M., 2011, A&A, 532, A54
    Srinivasan S., Boyer M. L., Kemper F., Meixner M., Sargent B. A., Riebel D., 2016,
    MNRAS, 457, 2814
    Ste en M., Schonberner D., 2000, A&A, 357, 180
    Templeton M. R., Karovska M., 2009, ApJ, 691, 1470
    Testi L., et al., 2014, Protostars and Planets VI, pp 339{361
    Teyssier D., et al., 2015, in Kerschbaum F., Wing R. F., Hron J., eds, Astronomical
    Society of the Paci c Conference Series Vol. 497, Why Galaxies Care about AGB Stars
    III: A Closer Look in Space and Time. p. 43
    VanderPlas J. T., 2018, ApJS, 236, 16
    VanderPlas J. T., Ivezic Z., 2015, ApJ, 812, 18
    Vanderplas J., 2015, gatspy: General tools for Astronomical Time Series in Python,
    doi:10.5281/zenodo.14833, https://doi.org/10.5281/zenodo.14833
    Vassiliadis E., Wood P. R., 1994, ApJS, 92, 125
    Villaver E., Garca-Segura G., Manchado A., 2002, ApJ, 571, 880
    Wareing C. J., Zijlstra A. A., O'Brien T. J., 2007, MNRAS, 382, 1233
    Waters L. B. F. M., Loup C., Kester D. J. M., Bontekoe T. R., de Jong T., 1994, A&A,
    281, L1
    Willems F. J., de Jong T., 1988, A&A, 196, 173
    Witteborn F. C., Strecker D. W., Erickson E. F., Smith S. M., Goebel J. H., Taylor B. J.,
    1980, ApJ, 238, 577
    Wong K. T., Kaminski T., Menten K. M., Wyrowski F., 2016, A&A, 590, A127
    Zhang B., Reid M. J., Menten K. M., Zheng X. W., Brunthaler A., 2012, A&A, 544, A42
    Zijlstra A. A., Chapman J. M., te Lintel Hekkert P., Likkel L., Comeron F., Norris R. P.,
    Molster F. J., Cohen R. J., 2001, MNRAS, 322, 280
    Zubko V. G., Mennella V., Colangeli L., Bussoletti E., 1996, MNRAS, 282, 1321
    van Leeuwen F., 2007, A&A, 474, 653
    van Loon J. T., Boyer M. L., McDonald I., 2008, ApJ, 680, L49

    QR CODE
    :::