| 研究生: |
徐敏恭 Min-kung Hsu |
|---|---|
| 論文名稱: |
黏彈性流體於剪流場下的微觀行為研究 The Microscopic Behaviors of Sheared Viscoelastic Fluids |
| 指導教授: |
阮文滔
Wen-tau Juan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 生物物理研究所 Graduate Institute of Biophysics |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 42 |
| 中文關鍵詞: | 黏彈性流體 、濃縮高分子溶液 、單分子 、剪力 |
| 外文關鍵詞: | shear, single molecule, concentrated polymer solution, viscoelastic fluids |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
牛頓流體和濃縮高分子溶液在剪力下的反應在單分子的層次被究,57%的蔗糖溶液做為牛頓流體而將λ-DNA 溶入TE 緩衝溶液中得到濃度5 ug/ul做為濃縮高分子溶液,Mn2+離子被加入濃縮高分子溶液中做為cross-linker. 螢光粒子被用來追蹤速度剖面圖,並以染色DNA 分子則用來觀察高分子微觀行為,剪力流場是由驅動一片在樣本之上的平板來產生。藉由螢光顯微技術,研究在牛頓流體和濃縮高分子溶液中單一高分子在剪力下的動態行為,在濃縮高分子溶液中速度剖面圖並非直線且DNA 分子的橢圓率也不是常數,當剪力停止之後濃縮高分子溶液表現出緩慢的舒張過程,由含有cross-linker 的濃縮高分子溶液中的單分子觀察並配合速度剖面圖和舒張過程,我們認為含有cross-linker 的高分子溶液為一具有堅固的三維連結網狀系統。
The responses of Newtonian fluid and concentrated polymer solutions under shear are studied at single molecule level. In this experiment, Newtonian fluids are 57% sucrose solutions and high concentration polymer solutions are prepared by dissolving λ‐DNA in TE buffer at 5 μg/μl concentration. The Mn2+ ions are added in the concentrated polymer solution to investigate the polymer solution at cross‐linked state. Fluorescence tracer particles are introduced in various flows; to measure the
velocity profiles. Dye labeled DNA molecules mixing with unlabeled ones are tracer molecules to observe the single molecule behaviors. The shear flow is generated by driving a plate on top of the fluid sample. Through the fluorescent microscopy, the dynamical behavior of individual molecule in the Newtonian fluid and concentrated
DNA solution under shear is investigated. The velocity profiles are nonlinear and the ellipse ratio of individual DNA molecules is not homogeneous in sheared concentrated polymer solution. The concentrated polymer solutions also show a slow relaxation process after shear. Base on the measured velocity profiles and the post‐shear relaxation process, we propose that, the cross‐linked concentrated polymer solution seems to be a strongly coupled 3D polymer network.
[1] Sperling, L.H., Introduction to physical polymer science, 4th ., John Wiley & Sons, Inc., 2006
[2] Tapadia, Prashant and Shi‐Qing Wang, Direct visualization of continuous simple shear in non‐Newtonian polymeric fluids., Phys. Rev. Lett., 96, 2006.
[3] Tapadia, Prashant, Sham Ravindranath, and Shi‐Qing Wang, Banding in entangled polymer fluids under oscillatory shearing., Phys. Rev. Lett., 96, 2006.
[4] Wang, Shi‐Qing, Sham Ravindranath, Pouyan Boukany, Michael Olechnowicz, Roderic P. Quirk, Adel Halasa, and Jimmy Mays, Nonquiescent relaxation in entangled polymer liquids after step shear., Phys. Rev. Lett., 97, 2006.
[5] Rosen, Moe Wm. and Neri E. Cornford, Fluid friction of fish slimes, Nature, 234, 1971.
[6] Y. Roiter and S. Minko, AFM Single Molecule Experiments at the Solid‐Liquid Interface: In Situ Conformation of Adsorbed Flexible Polyelectrolyte Chains, J. Am. Chem. Soc., 127, 15688, 2005.
[7] Winkler, Roland G., Semiflexible polymers in shear flow., Phys. Rev. Lett., 97, 2006.
[8] Crick, F.H.C., On Protein Synthesis., Symp. Soc. Exp. Biol. XII, 139, 1958.
[9] Crick, F., Central Dogma of Molecular Biology., Nature, 227, 561, 1970
[10] Candau S., J. Bastide, and M. Delsanti, Polymer networks., Adv. Polym. Sci., 44, 27 1982.
[11] Jun, Suckjoon and Axel Arnold, Confined space and effective interaction of multiple self‐avoiding chains., Phys. Rev. Lett., 98, 2007.
[12] Chambon, F. and H. H. Winter, Stopping of crosslinking reaction in a PDMS polymer at the gel point., Polym. Bull., 13, 1985.
[13] Meyers, Marc André Krishan Kumar Chawla, Mechanical Behavior of Materials., 1999.
[14] Bansil R, Stanley E, LaMont, Mucin biophysics. Ann Rev Physiol, 57, 635, 1995.
[15] Gendler SJ, Spicer, Epithelial mucin genes. Ann Rev Physiol, 57, 607, 1995.
[16] Tabak, In defense of the oral cavity: Structure, biosynthesis and function of salivary
mucins., Ann Rev Physiol, 57, 547, 1995.
[17] Perkins, Thomas T., Douglas E. Smith, and Steven Chu, Direct observation of tube‐like motion of a single polymer chain., Science, 264, 1994.
[18] Perkins, Thomas T., S.R. Quake, Douglas E. Smith and Steven Chu, Relaxation of a Single DNA Molecule Observed by Optical Microscopy., Science, 264, 1994.
[19] Smith, Douglas E., Thomas T. Perkins and Steven Chu, Self‐diffusion of an Entangled DNA Molecule by Reptation., Phys. Rev. Lett., 75, 1995.
[20] Smith, Douglas E., Thomas T. Perkins and Steven Chu, Dynamical Scaling of DNA Diffusion Coefficients., Macromolecules, 29, 1996.
[21] Larson, R.G., Thomas T. Perkins, Douglas E. Smith and Steven Chu, Hydrodynamics of Flow Past a DNA Molecule., Phys. Rev. E., 55, 1997.
[22] Quake S.R. and Steven Chu, The Normal Mode Structure of Extended Single Molecules of DNA., Nature, 388, 1997.
[23] Perkins, Thomas T., Douglas E. Smith and Steven Chu, Single Polymer Dynamics in an Elongational Flow., Science, 276, 1997.
[24] Smith, Douglas E. and Steven Chu, Response of Flexible Polymers to a Sudden Elongational Flow., Science, 281, 1998.
[25] Smith, Douglas E., H.P. Babcock and Steven Chu, Single Polymer dynamics in Steady Shear Flow, Science, 283, 1999.
[26] Babcock, H., Douglas E. Smith, J. Hur, E. S. G. Shaqfeh and Steven Chu, Relating the Microscopic and Macroscopic Response of a Polymeric Fluid in a Shearing Flow., Phys. Rev. Lett., 85, 2000