跳到主要內容

簡易檢索 / 詳目顯示

研究生: 藍嶸洧
Rong-Wei Lan
論文名稱: PVT 法生長碳化矽單晶過程中熱場、流場與濃度分佈對長 晶的影響
Influence of Thermal Field, Flow Field and Concentration Distribution on Crystal Growth During the PVT Growth of Silicon Carbide Single Crystal
指導教授: 陳志臣
Zhi-Chen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 95
中文關鍵詞: 物理氣相傳輸法碳化矽數值模擬
外文關鍵詞: Physical Vapor Transport, Silicon Carbide, Numerical simulation
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 物理氣相傳輸法(Physical vapor transport, PVT)為生長高品質大尺寸碳化矽單晶的主流製程,但該製程的長晶過程通常需要數十天,且長晶腔處於高溫低壓的密閉狀態難以透過實驗直接測量長晶腔內溫度、速度與濃度分佈,所以經由準確地數值模擬來了解其輸送現象是非常重要的,因此本研究發展合適模擬方法,透過數值模擬分析 PVT 長晶過程坩堝內溫度場、流場和反應氣體濃度的分佈,並對晶體進行長速(Growth rate)以及生長形狀的預測。本研究 透 過 改變感應線圈的位置與結構以及上溫度觀測點 (upper temperature)的溫度,來分析晶體生長初階段晶種(Seed)上的形貌以及長速,使系統達到最佳的長晶條件(Optimization);接著將 PVT 法單晶成長過程變成多個穩態生長步階(Steady-state growth steps),利用準穩態(Quasi-steady state)模擬碳化矽晶體在不同晶體厚度下坩堝內溫度場、流場和濃度分佈變化,並進一步對晶體形貌與長速進行預測,藉此導入長晶過程中可以降低晶體缺陷提高長速的優化製程技術。
    模擬結果顯示晶體厚度增加時,晶體中心與邊緣皆有長速下降的趨勢,其
    原因為腔體軸向溫度梯度與表面平均擴散係數降低,以及粉末表面物種分壓降低造成。而 PVT 製程上的改善依據為(1)調整線圈或改變坩堝構造來改善軸向溫度梯度或提高製程溫度以增加晶體的長速。(2)利用雙感應線圈降低晶體表面的徑向溫度梯度,使晶體中心與邊緣的長晶速率差距不要過大,避免晶體生長時在晶體內部產生熱應力。


    Physical vapor transport (PVT) is the mainstream process for growing highquality large-size silicon carbide single crystals. However, the crystal growth process of this process usually takes several tens of days, Moreover, the crystal growth chamber is in a closed state of high temperature and low pressure, so it is difficult to directly measure the temperature, velocity and concentration distribution in the crystal growth chamber through experiments. Therefore, it is very important to understand the transport phenomenon through accurate numerical simulation. In this study, a suitable simulation method was developed, through numerical simulation to analyze the distribution of temperature field, flow field and reaction gas concentration in the crucible during PVT crystallization, and to predict the growth rate and the growth
    shape of the crystal.
    In this study, by changing the position and structure of the induction coil and the temperature of the upper temperature observation point, the morphology and growth rate of the seed crystal in the initial stage of crystal growth were analyzed, so that the system could achieve the best crystal growth conditions. Then, the PVT single crystal growth process is changed into multiple steady-state growth steps, and the quasisteady state is used to simulate the temperature field, flow field and concentration distribution changes in the crucible at different crystal thicknesses. Then, the crystal morphology and growth rate are predicted, so as to introduce an optimized process technology that can reduce crystal defects and increase the growth rate during the crystal growth process.
    The simulation results show that when the thickness of the crystal increases, both center and edge of the crystal tend to reduce the growth rate. The reason is that the axial temperature gradient of the cavity and the average diffusion coefficient of the surface are reduced, and the partial pressure of species on the powder surface is reduced. The improvement in PVT process is based on (1) adjusting the coil or changing the crucible configuration to improve the axial temperature gradient or increase the process temperature to increase the growth rate of the crystal. (2) Use double induction coils to reduce the radial temperature gradient on the crystal surface,so that the difference in the growth rate between center and edge of the crystal is reduced to avoid thermal stress inside the crystal during crystal growth.

    摘要...I Abstract... II 致謝...IV 目錄... V 圖目錄... VIII 表目錄...XI 符號說明... XII 第一章 緒論...1 1.1 研究背景... 1 1.2 文獻回顧... 3 1.2.1 物理氣相傳輸法生長碳化矽單晶的條件... 3 1.2.2 碳化矽分解與長晶熱力學... 3 1.2.3 物理氣相傳輸法中影響長速的參數... 4 1.2.4 溫度分佈對晶體形貌的影響... 5 1.3 研究動機與目的... 8 第二章 研究方法... 9 2.1 物理系統... 9 2.2 基本假設... 12 2.3 統御方程式... 13 2.3.1 感應電流與電熱耦合... 13 2.3.2 熱傳... 13 2.3.3 流體力學... 14 2.3.4 質傳... 15 2.3.5 長晶熱力學與過飽和度... 15 2.3.6 長晶動力學... 16 2.4 邊界條件... 17 2.4.1 冷卻系統... 17 2.4.2 固體表面間輻射熱傳... 18 2.4.3 物種的傳輸... 19 2.4.4 坩堝內氣體... 20 2.5 材料性質... 22 第三章 數值方法... 28 3.1 數值分析求解... 28 3.2 網格配置... 30 3.3 輻射解析度測試.... 31 3.4 模型驗證... 33 第四章 結果與討論... 35 4.1 物理氣相傳輸法的熱流場分析... 35 4.1.1 感應電磁場分佈與熱源位置的關係... 35 4.1.2 物理氣相傳輸法的溫度分佈... 36 4.1.3 長晶腔內的流場... 37 4.2 腔體內物種濃度與通量分佈... 42 4.3 不同上溫度觀測點溫度對長晶速率的影響... 47 4.4 感應線圈設計對長晶速率的影響... 50 4.4.1 不同線圈高度... 50 4.4.2 非等距線圈... 51 4.5 不同晶體厚度的長速變化... 60 4.6 不同粉末孔隙率比較... 69 第五章 結論與未來研究方向... 71 5.1 結論... 71 5.2 未來研究方向... 73 參考文獻... 74

    [1] P. J. Wellmann, "Review of SiC crystal growth technology," Semiconductor
    Science and Technology, vol. 33, pp. 1-21, 2018.
    [2] S. B. Reese, T. Remo, J. Green, A. Zakutayev, "How much will gallium oxide
    power electronics cost," Joule, vol. 3, p.p. 1-5, 2019.
    [3] S. Lin, Z. Chen, B. Liu, L. Li, X. Feng, "Identification and control of SiC
    polytypes in PVT method," Journal of Materials Science, vol. 21, pp. 326-329,
    2010.
    [4] S. K. Lilov, "Study of the equilibrium processes in the gas phase during silicon
    carbide sublimation," Materials Science and Engineering, B, vol. 21, pp. 65-69,
    1993.
    [5] Q.-S. Chen, H. Zhang, V. Prasad, C. M. Balkas, N. K. Yushin, and S. Wang,
    "Kinetics and modeling of sublimation growth of silicon carbide bulk crystal,"
    Journal of Crystal Growth, vol. 224, pp. 101-110, 2001.
    [6] J. Su, X. Chen, and Y. Li, "Numerical design of induction heating in the PVT
    growth of SiC crystal, "Journal of Crystal Growth, vol. 401, pp. 128-132, 2014.
    [7] R. Ma, H. Zhang, V. Prasad, M. Dudley, "Growth kinetics and thermal stress in
    the sublimation growth of silicon carbide," Crystal Growth & Design, vol. 2, no.
    3, p.p. 213-220, 2002.
    [8] J. M. Dedulle, M. Anikin, M. Pons, E. Blanquet, A. Pisch, R. Madar, C. Bernard,
    "Free growth of 4H-SiC by sublimation method," Materials Science Forum, vol.
    457-460, pp. 71-74, 2004.
    [9] I. D. Matukov et al., "Modeling of facet formation in SiC bulk crystal growth,"
    Journal of Crystal Growth, vol. 266, no. 19, pp. 313-319, 2004.
    [10] Q.-S. Chen, H. Zhang, V. Prasad, C. M. Balkas, N. K. Yushin, "Modeling of heat
    transfer and kinetics of physical vapor transport growth of silicon carbide
    crystals," Journal of Heat Transfer, vol. 123, pp. 1098-1109, 2001.
    [11] Q.-S. Chen, J.-Y. Yan, and V. Prasad, "Application of flow-kinetics model to the
    PVT growth of SiC crystals," Journal of Crystal Growth, vol. 303, no. 1, pp. 357-
    361, 2007.
    [12] F. P. Incropera, D. P. Dewitt, T. L. Bergman, A. S. Lavine, "Fundamentals of heat
    and mass transfer," John Wiley & Sons, 6
    th Edition, 2007.
    [13] D. Duc, I. Naoki, F. Kazuyoshi, "A study of near-infrared nanosecond laser
    ablation of silicon carbide, " International Journal of Heat and Mass Transfer, vol.
    65, p.p. 713-718, 2013.
    [14] P. Vueghs, P. Beckers, "Presentation of the hemisphere method," Engineering
    Sciences, vol. 53, 2006.
    [15] T. Kaneko, "Growth kinetics of vapor-grown SiC," Journal of Crystal Growth,
    vol. 128, pp. 354-357, 1993.
    [16] S. H. P. Chen, S. C. Saxena, "Thermal conductivity of argon in the temperature
    range 350 to 2500 K," Molecular Physics, vol. 29, no. 2, pp. 455-466, 1975.
    [17] O. Klein, P. Philip, "Transient numerical investigation of induction heating during
    sublimation growth of silicon carbide single crystals," Journal of Crystal Growth,
    vol. 247, pp. 219-235, 2003.
    [18] N. M. Ravindra, S. R. Marthi, A. Banobre, "Radiative properties of
    semiconductors," IOP Concise Physics, 2017.
    [19] Y. Wang, M. Sasaki, T. Hiral, "Thermal properties of chemical vapour-deposition
    SiC-C nanocomposites," Journal of Materials Science, vol. 26, pp. 5495-5501,
    1991.
    [20] P. J. Wellmann, M. Bickermann, D. Hofmann, L. Kadinski, M. Selder, T. L.
    Straubinger, A. Winnacker, "In situ visualization and analysis of silicon carbide
    physical vapor transport growth using digital X-ray imaging," Journal of Crystal
    Growth, vol. 216, pp. 263-272, 2000.
    [21]B. Gao, X. J. Chen, S. Nakano, S. Nishizawa, K. Kakimoto, "Analysis of SiC
    crystal sublimation growth by fully coupled compressible multi-phase flow
    simulation," Journal of Crystal Growth, vol. 312, pp. 3349-3355, 2010.
    [22] D. W. Snyder, V. D. Heydemann, W. J. Everson, D. L. Barrett, "Large dimeter
    PVT growth of bulk 6H SiC crystal," Materials Science Forum, vol. 338-342, pp.
    9-12, 2000.
    [23] H. M. Hobgood, D. L. Barrett, J. P. McHugh, R. C. Clarke, S. Sriram, A. A. Burk,
    J. Greggi, C. D. Brandt, R. H. Hopkins, W. J. Choyke, "Large diameter 6H-SiC
    for microwave device applications," Journal of Crystal Growth, vol. 137, pp. 181-
    186, 1994.
    [24] S. Ota, T. Furusho, H. Takagi, S. Oshima, S. Nishino, "High quality SiC bulk
    growth by sublimation method using elemental Silicon and Carbon powder as SiC
    source materials," Materials Science Forum, vol. 457-460, pp. 115-118, 2004.

    QR CODE
    :::