跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃亦賢
I-Shien Huang
論文名稱: 鈮酸鋰偏振轉換器波導
LiNbO3 Waveguide Polarization Convertor
指導教授: 陳啟昌
Chii-Chang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 58
中文關鍵詞: 鈮酸鋰偏振轉換器L 型波導
外文關鍵詞: LiNbO₃, Waveguide, Polarization Convertor
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討了波導材料LiNbO3的L型和矩形偏振轉換器,利用其折射率的各向異性來轉換波導內入射光的偏振方向。我們使用有限時域差分法來模擬偏振光在波導中的傳輸的強度與偏振的變化。分析了不同尺寸的L 型波導和矩形波導結構,經過優化後,使偏振轉換效率可達到接近100%。針對 L 型偏振轉換器波導進行設計與分析,為了避免傳統蝕刻結構所帶來的製程困難,亦提出矩形波導作為替代方案。為加速兩種結構之尺寸優化流程,我們引入雙波導耦合理論,並推導出可預估偏振轉換的解析公式,以有效提升設計效率。並且在波導中施加電場改變折射率後,對偏振光轉換的影響。計算了調整輸出光偏振方向時所需的電壓強度,藉由此分析,評估電控偏振調制在LiNbO3偏振轉換器波導中的可行性與應用潛力。


    This study investigates both L-shaped and rectangular polarization converters based on LiNbO₃ waveguide material, leveraging its refractive index anisotropy to achieve polarization conversion of incident light within the waveguide. The Finite-Difference Time-Domain (FDTD) method was employed to simulate the transmission and polarization conversion behavior of light propagating through the waveguide. Various geometrical configurations of both L-shaped and rectangular structures were analyzed, and after optimization, a polarization conversion efficiency approaching 100% was achieved.
    To overcome fabrication challenges associated with conventional etched structures, a rectangular waveguide design was proposed as an alternative. Coupled-mode theory was introduced to accelerate the dimensional optimization process, and an analytical formula was derived to estimate the polarization conversion efficiency, thereby improving design efficiency. Furthermore, the effect of applying an external electric field to alter the refractive index distribution within the waveguide was investigated, along with the resulting change in polarization conversion performance. The required voltage to achieve the desired output polarization state was also calculated. Based on these analyses, the feasibility and application potential of electrically controlled polarization conversion in LiNbO₃-based polarization rotator waveguides were comprehensively evaluated.

    目錄 摘要 i 致謝 iii 目錄 iv 第1章 緒論 1 1.1偏振轉換器簡介 1 1.2 LiNbO₃晶體介紹 2 1.3 L型偏振轉換器 3 1.4矩形偏振轉換器 5 1.5 結論 6 第2章 理論與波導耦合設計 8 2.1有限時域差分法 8 2.2波導耦合理論 13 2.3偏振轉換器之偏振耦合 15 2.4結論 22 第3章 L型和矩形波導耦合設計 24 3.1 結構掃描(L型) 25 3.2掃描結構結果(L型) 26 3.3 電控調制之偏振轉換器 29 3.4 結構掃描(矩形) 32 3.5掃描結構結果(矩形) 35 3.5.1不同波長下的轉換效率 37 3.6不同電控調制之偏振轉換器 39 3.7 結論 41 第4章 總結和未來展望 43 4.1 總結 43 4.2 未來展望 44

    References
    [1] K. Gallacher, P. F. Griffin, E. Riis, M. Sorel, and D. J. Paul, "Silicon nitride waveguide polarization rotator and polarization beam splitter for chip-scale atomic systems," APL Photonics, vol. 7, no. 4, 2022, doi: 10.1063/5.0077738.
    [2] S. M. Salih and S. K. Tawfeeq, "Integrated gallium phosphide-waveguide polarization rotator based on rotating a horizontal slot by 45 degree for 700 nm wavelength," Journal of Optics, vol. 53, no. 3, pp. 2168-2173, 2024/07/01 2024, doi: 10.1007/s12596-023-01420-6.
    [3] S.-H. Kim, R. Takei, Y. Shoji, and T. Mizumoto, "Single-trench waveguide TE-TM mode converter," Opt. Express, vol. 17, no. 14, pp. 11267-11273, 2009/07/06 2009, doi: 10.1364/OE.17.011267.
    [4] L.-Y. Liu, H.-C. Huang, C.-W. Chen, F.-L. Hsiao, Y.-C. Cheng, and C.-C. Chen, "Design of Reflective Polarization Rotator in Silicon Waveguide," Nanomaterials, vol. 12, no. 20, p. 3694, 2022. [Online]. Available: https://www.mdpi.com/2079-4991/12/20/3694.
    [5] C.-C. Chen, "Design of ultra-short polarization convertor with enhanced birefringence by photonic crystals," Results in Physics, vol. 24, p. 104138, 2021/05/01/ 2021, doi: https://doi.org/10.1016/j.rinp.2021.104138.
    [6] R. S. Weis and T. K. Gaylord, "Lithium niobate: Summary of physical properties and crystal structure," Applied Physics A, vol. 37, no. 4, pp. 191-203, 1985/08/01 1985, doi: 10.1007/BF00614817.
    [7] D. Sun et al., "Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications," Light: Science & Applications, vol. 9, no. 1, p. 197, 2020/12/10 2020, doi: 10.1038/s41377-020-00434-0.
    [8] H. Luo et al., "High-Performance Polarization Splitter-Rotator Based on Lithium Niobate-on-Insulator Platform," IEEE Photonics Technology Letters, vol. 33, no. 24, pp. 1423-1426, 2021, doi: 10.1109/LPT.2021.3123101.
    [9] H. Han and B. Xiang, "Simulation and analysis of electro-optic tunable microring resonators in silicon thin film on lithium niobate," Scientific Reports, vol. 9, no. 1, p. 6302, 2019/04/19 2019, doi: 10.1038/s41598-019-42818-2.
    [10] Y.-Q. Lu, Z.-L. Wan, Q. Wang, Y.-X. Xi, and N.-B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Applied Physics Letters, vol. 77, no. 23, pp. 3719-3721, 2000, doi: 10.1063/1.1329325.
    [11] A. S. Andrushchak et al., "Spatial anisotropy of the acousto-optical efficiency in lithium niobate crystals," Journal of Applied Physics, vol. 108, no. 10, 2010, doi: 10.1063/1.3510518.
    [12] Z. Wang and D. Dai, "Ultrasmall Si-nanowire-based polarization rotator," J. Opt. Soc. Am. B, vol. 25, no. 5, pp. 747-753, 2008/05/01 2008, doi: 10.1364/JOSAB.25.000747.
    [13] F.-L. Hsiao et al., "Design of Waveguide Polarization Convertor Based on Asymmetric 1D Photonic Crystals," Nanomaterials, vol. 12, no. 14, p. 2454, 2022. [Online]. Available: https://www.mdpi.com/2079-4991/12/14/2454.
    [14] H. Zhou, C. Li, A. L. Eujin, L. Jia, M. Yu, and G. Lo, "Ultra-compact and broadband Si photonics polarization rotator by self-alignment process," Opt. Express, vol. 23, no. 5, pp. 6815-6821, 2015/03/09 2015, doi: 10.1364/OE.23.006815.
    [15] H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S.-i. Itabashi, "Polarization rotator based on silicon wire waveguides," Opt. Express, vol. 16, no. 4, pp. 2628-2635, 2008/02/18 2008, doi: 10.1364/OE.16.002628.
    [16] J. Wang, J. Xiao, and X. Sun, "Design of a broadband polarization rotator for silicon-based cross-slot waveguides," Appl. Opt., vol. 54, no. 12, pp. 3805-3810, 2015/04/20 2015, doi: 10.1364/AO.54.003805.
    [17] H. Jin, L. Niu, J. Zheng, P. Xu, and A. Majumdar, "Compact nonvolatile polarization switch using an asymmetric Sb2Se3-loaded silicon waveguide," Opt. Express, vol. 31, no. 6, pp. 10684-10693, 2023/03/13 2023, doi: 10.1364/OE.482817.
    [18] Y. Kane, "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302-307, 1966, doi: 10.1109/TAP.1966.1138693.
    [19] J. A. Stratton, Electromagnetic Theory. New York: McGraw-Hill, 1941.
    [20] K. a. K. Kawano, Tsutomu, "Finite-Difference Time-Domain Method," in Introduction to Optical Waveguide Analysis, K. a. K. Kawano, Tsutomu Ed. Hoboken, NJ: John Wiley & Sons, 2001, pp. 233–249.
    [21] A. Taflove and M. E. Brodwin, "Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell's Equations," IEEE Transactions on Microwave Theory and Techniques, vol. 23, no. 8, pp. 623-630, 1975, doi: 10.1109/TMTT.1975.1128640.
    [22] K. Hosseini, "CFL Stability Conditions for the FDTD Method in Bounded Inhomogeneous Anisotropic Media," Iranian Journal of Electrical and Electronic Engineering, vol. 18, no. 2, pp. 139-146, 2022.
    [23] J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, vol. 114, no. 2, pp. 185-200, 1994/10/01/ 1994, doi: https://doi.org/10.1006/jcph.1994.1159.
    [24] K. Okamoto, "Chapter 3 – Optical Fibers," in Fundamentals of Optical Waveguides (Second Edition), K. Okamoto Ed., 2nd ed. Burlington: Academic Press, 2006, pp. 57–158.
    [25] K. Okamoto, "Chapter 4 – Coupled Mode Theory," in Fundamentals of Optical Waveguides (Second Edition), K. Okamoto Ed. Burlington: Academic Press, 2006, pp. 159–207.
    [26] A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE Journal of Quantum Electronics, vol. 9, no. 9, pp. 919-933, 1973, doi: 10.1109/JQE.1973.1077767.
    [27] 呂冠佑, "L 型 LiNbO₃ 偏振旋轉器波導研究," 碩士論文, 光電科學與工程學系, 國立中央大學, 2024.
    [28] A. a. Y. Yariv, Pochi, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley Classics Library). Hoboken, NJ: Wiley, 2003.
    [29] J. W. Liu, R.; Boes, A.; Ma, C.; Choi, D.-Y.; Mitchell, A.; Tan, D. T. H., "Low half-wave-voltage, ultra-high bandwidth thin-film LiNbO₃ modulator based on hybrid waveguide and periodic capacitively loaded electrodes," Opt. Express, vol. 29, no. 8, pp. 12323–12331, 2021.
    [30] Q. Wang and J. Xiao, "Compact and efficient polarization rotator using laterally asymmetric rib waveguides on a lithium-niobate-on-insulator platform," Appl. Opt., vol. 62, no. 18, pp. 5042-5049, 2023/06/20 2023, doi: 10.1364/AO.491894.

    QR CODE
    :::