| 研究生: |
茅雅音也 Ya-chih Mao |
|---|---|
| 論文名稱: |
先進電離層探測儀之機構設計與分析 Mechanical Design and Structure Analysis of Advanced Ionospheric Probe |
| 指導教授: | 趙吉光 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 太空科學研究所 Graduate Institute of Space Science |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 電離層探測儀 、科學酬載 |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
安置在福爾摩沙衛星五號的科學酬載「先進電離層探測儀」(Advanced Ionospheric Probe, AIP),乃綜合多項電離層特性量測模組於一身。本文將呈現AIP的機構設計,並以分析方式來驗證下列各項需求。由於科學酬載的安裝位置已定,僅能以腳架支撐探測儀,以達到大於等於 50° x 50°的量測視野。此外,AIP的結構設計必須符合福衛五號對於科學酬載的介面需求,包括結構介面、熱介面、太空環境影響(例如氧原子侵蝕等影響)等。在結構方面,採用SolidWorks機械工程軟體輔助設計與模擬,估算一般測量參數:質量、質心、尺寸;靜態分析:負載因子、安全裕度、挫屈安全裕度、自然頻率;動態分析:弦波振動之位移量、速度與加速度。在熱分析方面,採用MSC/SINDA熱模擬分析軟體,配合福衛五號的環境熱模型,來評估AIP探測儀的溫度變化範圍、與衛星頂板的熱耦合效應。在氧原子侵蝕方面,列出AIP探測儀曝露於氧原子環境的材料,並參照材料與氧原子反應速率,估算氧原子對於結構的侵蝕程度是否會迅速降低電絕緣效果。結果顯示,AIP的結構設計與數值分析結果均能符合福衛五號的規範。
Advanced Ionospheric Probe (AIP) is an all-in-one plasma sensor for the FORMOSAT-5 satellite to measure ionospheric plasma characteristics. Although a mounting space on the top panel is limited, a field of view (FOV) higher than 50° x 50° is required for the AIP to measure incoming ionic angles of arrival in most of orbital environment. Meanwhile, a mechanical design of the AIP shall meet all requirements of the FORMOSAT-5 satellite. In this report, the design of the AIP will be outlined and indicates that the FOV of the sensor can be achieved. The design is also verified by Dassault Systèmes SolidWorks Simulation 2011 in a static analysis, like mass, center of gravity, dimension, load factors, margin of safety, buckling safety margin, 1st mode natural frequency, and, in a dynamic analysis, like displacement, velocity, and acceleration of sine vibration. We carry out AIP thermal analysis with the satellite thermal model by use MSC/SINDA, give a range of the temperature. And the last one is the atomic oxygen analysis, which could sift material to follow the requirement.
Adams V. and A. Askenazi, Building Better Products with Finite Element Analysis, OnWord Press, Santa Fe, NM, (1999).
Anderson, P. C. , Characteristics of spacecraft charging in low Earth orbit, J. Geophys. Res., 117, A07308, DOI:10.1029/2011JA016875 (2012).
Cremer L. and M. Heckl, Stucture-Borne Sound, Springer-Verlag, New York, (1988).
Davidson R. L. , G. D. Earle, J. H. Klenzing, and R. A. Heelis , A numerical study of geometry dependent errors in velocity, temperature, and density measurements from single grid planar retarding potential analyzers, (2010).
Dyne S.J.C., Tunbridge D.E.L., Collins P.P. , The vibration environment on a satellite in orbit, High Accuracy Platform Control in Space, IEEE Colloquium on, 12/1-12/6, (1993).
Edward M. Silverman, Space Environmental Effects on Spacecraft: LEO Materials Selection Guide, NASA CR-4661, (1995).
FORMOSAT-5 Spacecraft Bus to Science Payload Interface Requirement Document, FS5-IRD-0001, (2011).
FORMOSAT-5 AIP Mechanical Structure Analysis Report, FS5SPL-MECH-ANLYS, (2012).
FORMOSAT-5 AIP Thermal Analysis Report, FS5SPL-THER-ANLYS, (2012).
FORMOSAT-5 AIP Atomic Oxygen Analysis Report, FS5SPL-AO-ANLYS. (2013).
Huddlestone, R. H. and Leonard, S. L., Plasma Diagnostic Techniques, (1968).
Juvinall, R: Stress, Strain, and Strength, section 14.13, Page 295. McGraw-Hill, (1967).
McCormick, Barnes W., Aerodynamics, Aeronautics and Flight Mechanics. John Wiley & Sons. New York ISBN 0-471-03032-5 (1979).
NASA Contractor Report 4661 Part 1, Space Environmental Effect on Spacecraft: LEO Material Selection Guide, (1995).
NASA-STD-5001, Structural Design and Test Factors for Spaceflight Hardware, section 3. NASA, (2008).
NASA/TP-1999-209260, Material Selection Guidelines to Limit Atomic Oxygen Effects on Spacecraft Surfaces, (1999).
胡紹賢,太空電漿探針系統,碩士論文,2007.
林再文,太空離子探測系統,碩士論文,2010.
朱宴達,微衛星離子探測系統,碩士論文,2011.
實威國際,SolidWorks Simulation原廠教育訓練手冊,易習圖書,2011.