跳到主要內容

簡易檢索 / 詳目顯示

研究生: 馬莫德
Mamud Manneh
論文名稱: 4D 技術在營建產業應用領域之文獻分析
Analysis of Application Areas of 4D in Construction Industry: Literature Review
指導教授: 楊智斌
Jyh-Bin Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木系營建管理碩士班
Master's Program in Construction Management, Department of Civil Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 112
中文關鍵詞: 4D CAD4D BIM系統性分析文獻回顧分類
外文關鍵詞: 4D CAD, 4D BIM, systematic analysis, literature review, categorization
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    建築資訊建模(Building Information Modeling, BIM)技術是近十年來營建與土木工程研究領域的
    主流之一,其空間的展現技術(4D-BIM)是一項完整的數位化技術,其已被認同具潛力可以為營
    建規劃與管理工作帶來革新,而此想法亦被得許多政府單位用以推動BIM技術以利為營建專案
    帶來效率與品質的提升,同時伴隨而來有關4D 大量研究的投入以及文獻的發表。故若能釐清
    並掌握此領域的核心研究、研究落差以及趨勢,對於後續更廣泛性的研究有其重要性。過去雖
    已有關於4D 文獻分析之研究,然而其主要侷限於4D 應用領域或如何選擇,甚至係利用有限數
    量的文獻所完成的研究。本研究之目的是針對2005 至2016 年間發表4D 有關文獻,透過完整
    且有系統之分析,掌握其背後的資訊。本研究已經由一個4D 應用之架構完成文獻分析,並釐
    清4D 應用在專案管理領域之研究落差為營建廢棄物管理、品質管理、資源管理、工地安裝後
    勤與工地安全。此外,本研究發現過去數年較受到重視的4D 應用次領域為施工進度追蹤、視
    覺化及溝通與協同、時程管理、工作空間規劃、施工方法規劃等。


    ABSTRACT

    Building Information Modeling (BIM) technology has emerged as one of the key streams in construction
    and civil engineering research within the last decade. Its dimensional presenting technology (4D-BIM)
    is now a global digital technology that is widely believed to have the potential to revolutionize
    construction planning and management work. This has been mainly a result of worldwide government
    initiatives promoting BIM uptake to improve efficiency and quality in delivering construction projects.
    Thus, this development has been accompanied by a keen interest in 4D modeling aspects and the release
    of a tremendous amount of 4D literature. It is, therefore, essential to comprehend and determine the core
    research work, gaps and trends emerging in this field, and its implications for broader research. Previous
    studies of similar reviews of identifying the core of 4D research have generally been limited in scope
    focusing predominantly on other aspects of BIM applications instead of 4D applications areas or
    different selection criteria were used and also a limited number of reviewed papers. This study aims to
    conduct a comprehensive and systematic analysis, in which a review of a wide range of existing 4D
    literature focusing on the last decade from 2005 to 2016 is completed. A literature review within a 4D
    application framework has been conducted and the result reveals a research gap for 4D applications in
    the project management domains of construction waste management, quality management, resource
    management, site installation logistics, and site security. It was also confirmed that construction progress
    tracking, visualization and communication and collaboration, schedule management, workspace
    planning, and construction method planning as the sub-categories with the most significant growth in
    the last years.

    Table of Contents Analysis of Application Areas of 4D in Construction Industry: Literature Review............................... i ABSTRACT .................................................................................................................................................. ii 摘要…………………………………………………………………………………………………………iii ACKNOWLEDGEMENT.......................................................................................................................... iv Table of Contents .......................................................................................................................................... v List of Tables ............................................................................................................................................. viii List of Figures ............................................................................................................................................. ix CHAPTER I: INTRODUCTION ............................................................................................................... 1 1.1. Research background ........................................................................................................................... 1 1.2. Motivation .............................................................................................................................................. 3 1.3. Problem statement................................................................................................................................. 3 1.4. Research Aims and Objectives ............................................................................................................. 4 1.5. Research Flowchart............................................................................................................................... 4 1.6. Organization of the thesis ..................................................................................................................... 6 CHAPTER II: DEFINITION OF 4D MODELING: ................................................................................ 7 2.1. 4D Modeling ........................................................................................................................................... 7 2.1.1. First generation 4D tools ........................................................................................... 8 2.1.2. Second generation 4D tools ....................................................................................... 9 2.2. Benefit of 4D CAD ............................................................................................................................... 10 2.3. Limitations of the previous 4D tools .................................................................................................. 10 2.3.1. Creation of 4D models is time-consuming ............................................................... 10 2.3.2. Manipulation of 4D models is time-consuming ........................................................ 11 2.3.3. Visualization –only graphic representation of the building ..................................... 11 2.3.4. Lack of support for construction knowledge ........................................................... 11 vi 2.3.5. Lack of integration with other project data ............................................................. 11 2.4. Discussion ............................................................................................................................................. 12 2.5. Current Advancement in 4D CAD Research .................................................................................... 14 2.6. 4D BIM ................................................................................................................................................. 15 2.6.1. Definition of BIM .................................................................................................... 15 2.6.2. Definition of 4D BIM ............................................................................................... 16 CHAPTER III: REVIEW APPROACH .................................................................................................. 17 3.1. Originality of the review ..................................................................................................................... 17 3.2. Research Methodology ........................................................................................................................ 18 3.3. Summary of Research Procedures ..................................................................................................... 20 CHAPTER IV: DATA ANALYSIS .......................................................................................................... 22 4.1. Framework categorizing published papers. ...................................................................................... 22 4.2. Frequency of 4D publication over the last decade and topics more appealing to researchers outcomes ............................................................................................................................................... 26 4.3. Research gap and trend of 4D publications outcomes ..................................................................... 29 4.4. 4D CAD research papers versus 4D BIM and literature that both discusses 4D CAD and 4D BIM outcomes ...................................................................................................................................... 30 4.5. The percentages of different research articles from the viewpoint of different stakeholdersoutcomes ............................................................................................................................................... 31 4.6. Type of project used ............................................................................................................................ 34 4.7. Commercial and non-commercial software system.......................................................................... 35 CHAPTER V: CONTENT ANALYSIS ................................................................................................... 38 5.1. Category: Construction planning ...................................................................................................... 38 5.1.1. Sub-category: work-space planning ........................................................................ 39 5.1.2. Sub-category: Waste Management ......................................................................... 42 5.1.3. Sub-category: Visualization and Communication and Collaboration ...................... 42 vii 5.1.4. Sub-category: Schedule management ...................................................................... 45 5.1.5. Sub-category: Quality Management ........................................................................ 47 5.1.6. Sub-category: Hazards Identification and safety planning ...................................... 47 5.1.7. Sub-category: Design Interrogation ........................................................................ 49 5.1.8. Sub-category: Cost Estimation ................................................................................ 49 5.1.9. Sub-category: Coordination .................................................................................... 50 5.1.10.Sub-category: Construction progress monitoring .................................................. 51 5.1.11.Sub-category Construction Method Planning ........................................................ 53 5.2. Category: Site Planning ...................................................................................................................... 55 5.2.1. Sub-category: Site Layout ....................................................................................... 55 5.2.2. Others ..................................................................................................................... 56 CHAPTER VI: LIMITATIONS, DISCUSSION, AND CONCLUSION.............................................. 57 6.1. Review of the Research Objectives .................................................................................................... 57 6.2. Limitations of the study ...................................................................................................................... 57 6.3. Discussion ............................................................................................................................................. 58 6.4. Conclusion ............................................................................................................................................ 59 References ................................................................................................................................................... 61 Appendix A: 4D application categories across lifecycle phases and stakeholders ............................... 72 Appendix B: 4D Articles with case study on different project types ..................................................... 79 Appendix C: Commercial and Non-commercial software ..................................................................... 83

    References

    1. Whisker, V., et al. Using immersive virtual environments to develop and visualize construction
    schedules for advanced nuclear power plants. in Proceedings of ICAPP. 2003.
    2. Akinci, B., M. Fischer, and J. Kunz, Automated generation of workspaces required by
    construction activities. Journal of Construction Engineering and Management-ASCE, 2002.
    128(4): p. 306-315.
    3. Coles, B.C. and K.F. Reinschmidt, Computer-integrated construction. Civil Engineering, 1994.
    64(6): p. 50.
    4. Jupp, J., 4D BIM for Environmental Planning and Management. Procedia Engineering, 2017.
    180: p. 190-201.
    5. Volk, R., J. Stengel, and F. Schultmann, Building Information Modeling (BIM) for existing
    buildings— a Literature review and future needs. Automation in construction, 2014. 38: p.
    109-127.
    6. Ding, L., Y. Zhou, and B. Akinci, Building Information Modeling (BIM) application framework:
    The process of expanding from 3D to computable nD. Automation in Construction, 2014. 46:
    p. 82-93.
    7. Hartmann, T. and M. Fischer, Supporting the constructability review with 3D/4D models.
    Building Research & Information, 2007. 35(1): p. 70-80.
    8. Fischer, M. and K. Calvin, PM4D final report. 2002: CIFE.
    9. Haymaker, J. and M. Fischer, Challenges and benefits of 4D modeling on the Walt Disney
    Concert Hall Project. Center for Integrated Facility Engineering, Stanford University, 2001.
    10. Zhou, Y., L.Y. Ding, and L.J. Chen, Application of 4D visualization technology for safety
    management in metro construction. Automation in Construction, 2013. 34: p. 25-36.
    11. Park, J., et al., 3D/4D CAD Applicability for Life-Cycle Facility Management. Journal of
    Computing in Civil Engineering, 2011. 25(2): p. 129-138.
    12. GUDGEL, J., The business value of BIM: Getting Building Information Modeling to the bottom
    Line" McGraw-Hill SmartMarket Report. 2009.
    13. Gledson, B. and D. Greenwood, Surveying the extent and use of 4D BIM in the UK. Journal of
    Information Technology in Construction (ITcon), 2016. 21: p. 57-71.
    14. Barrett, P., Construction Management Pull for 4D CAD, in Construction Congress VI. 2000
    Orlando, Florida, United States.
    15. Hartmann, T., J. Gao, and M. Fischer, Areas of application for 3D and 4D models on
    construction projects. Journal of Construction Engineering and Management-ASCE, 2008.
    134(10): p. 776-785.
    16. Mahalingam, A., R. Kashyap, and C. Mahajan, An evaluation of the applicability of 4D CAD on
    construction projects. Automation in Construction, 2010. 19(2): p. 148-159.
    62
    17. Ding, L.Y., Y. Zhou, and B. Akinci, Building Information Modeling (BIM) application
    framework: The process of expanding from 3D to computable nD. Automation in
    Construction, 2014. 46: p. 82-93.
    18. Azhar, S., Building Information Modeling (BIM): Trends, Benefits, Risks, and Challenges for the
    AEC Industry. Leadership and Management in Engineering, 2011. 11(3): p. 241-252.
    19. Kam, M.F.a.C., PM4D Final Report
    CIFE Technical Report Number 143. 2002.
    20. Santos, R., A.A. Costa, and A. Grilo, Bibliometric analysis and review of Building Information
    Modelling literature published between 2005 and 2015. Automation in Construction, 2017.
    80: p. 118-136.
    21. Yalcinkaya, M. and V. Singh, Patterns and trends in building information modeling (BIM)
    research: A latent semantic analysis. Automation in construction, 2015. 59: p. 68-80.
    22. Heesom, D. and L. Mahdjoubi, Trends of 4D CAD applications for construction planning.
    Construction Management and Economics, 2004. 22(2): p. 171-182.
    23. Koo, B. and M. Fischer, Feasibility Study of 4D CAD in Commercial Construction. Journal of
    Construction Engineering and Management, 2000. 126(4): p. 251-260.
    24. Dang, T. and H.J. Bargstadt, 4D Relationships: The Missing Link in 4D Scheduling. Journal of
    Construction Engineering and Management, 2016. 142(2): p. 16.
    25. Dengenis, S., White Paper - 4D Construction Scheduling Software. October 2015.
    26. Sheppard, L.M., Virtual building for construction projects. IEEE Computer Graphics and
    Applications, 2004. 24(1): p. 6-12.
    27. Mallasi, Z., Dynamic quantification and analysis of the construction workspace congestion
    utilising 4D visualisation. Automation in Construction, 2006. 15(5): p. 640-655.
    28. Rischmoller, L. and L.F. Alarcón. 4D-PS: Putting an IT new work process into effect. in
    Proceedings of CIB w78 2002 Conference on Construction Information Technology. 2002.
    29. Harun, Z. and G. Singh, Visual simulation of construction projects on a microcomputer.
    Simulation Practice and Theory, 1994. 2(2): p. 77-90.
    30. Research, D.C. 4D CAD Research Examples. Accessed August 7, 2002]. Available from:
    https://web.stanford.edu/group/4D/examples/examples.shtml#mockup.
    31. Liston, K., M. Fischer, and J. Kunz, Requirements and benefits of interactive information
    workspaces in construction, in Computing in Civil and Building Engineering (2000). 2000. p.
    1277-1284.
    32. Songer, A.D., J.E. Diekmann, and D. Karet, Animation-based construction schedule review.
    Construction innovation, 2001. 1(3): p. 181-190.
    33. Liston, K., M. Fischer, and T. Winograd, Focused sharing of information for multidisciplinary
    decision making by project teams. Journal of Information Technology in Construction (ITcon),
    2003. 6(6): p. 69-82.
    63
    34. Liston, K.M., M. Fischer, and J. Kunz. 4-D Annotator: A Visual Decision Support Tool for
    Construction Planners. in Computing in Civil Engineering. 1998. ASCE.
    35. Liston, K., M. Fischer, and J. Kunz, Designing and evaluating visualization techniques for
    construction planning, in Computing in Civil and Building Engineering (2000). 2000. p. 1293-
    1300.
    36. McKinney, K., et al. Interactive 4D-CAD. in Proceedings of the third Congress on Computing in
    Civil Engineering. 1996. ASCE, Anaheim, CA, June.
    37. Tanyer, A.M. and G. Aouad, Moving beyond the fourth dimension with an IFC-based single
    project database. Automation in Construction, 2005. 14(1): p. 15-32.
    38. Construction Management Pull for 4D CAD, in Construction Congress VI.
    39. Aouad, G., A. Lee, and S. Wu, nD Modelling for Collaborative Working in Construction.
    Architectural Engineering and Design Management, 2005. 1(1): p. 33-44.
    40. Ihsan Faraj, M.A., A Modularised Integrated Computer Environment for the Construction
    Industry: . Journal of Information Technology in Construction, November 1999.
    41. Chau, K.W., M. Anson, and J.P. Zhang, 4D dynamic construction management and
    visualization software: 1. Development. Automation in Construction, 2005. 14(4): p. 512-524.
    42. Hartmann, T. and N. Vossebeld, A semiotic framework to understand how signs in
    construction process simulations convey information. Advanced Engineering Informatics,
    2013. 27(3): p. 378-385.
    43. Wang, H.J., et al., 4D dynamic management for construction planning and resource
    utilization. Automation in Construction, 2004. 13(5): p. 575-589.
    44. Jongeling, R. and T. Olofsson, A method for planning of work-flow by combined use of
    location-based scheduling and 4D CAD. Automation in Construction, 2007. 16(2): p. 189-198.
    45. Russell, A., et al., Visualizing high-rise building construction strategies using linear scheduling
    and 4D CAD. Automation in Construction, 2009. 18(2): p. 219-236.
    46. Turkan, Y., et al., Automated progress tracking using 4D schedule and 3D sensing
    technologies. Automation in Construction, 2012. 22: p. 414-421.
    47. Feng, C.-W., Y.-J. Chen, and J.-R. Huang, Using the MD CAD model to develop the time–cost
    integrated schedule for construction projects. Automation in Construction, 2010. 19(3): p.
    347-356.
    48. Wang, W.C., et al., Integrating building information models with construction process
    simulations for project scheduling support. Automation in Construction, 2014. 37: p. 68-80.
    49. Moon, H., N. Dawood, and L. Kang, Development of workspace conflict visualization system
    using 4D object of work schedule. Advanced Engineering Informatics, 2014. 28(1): p. 50-65.
    50. Eastman, C.M., et al., BIM handbook: A guide to building information modeling for owners,
    managers, designers, engineers and contractors. 2011: John Wiley & Sons.
    64
    51. Goedert, J.D. and P. Meadati, Integrating Construction Process Documentation into Building
    Information Modeling. Journal of Construction Engineering and Management, 2008. 134(7):
    p. 509-516.
    52. Goedert, J.D. and P. Meadati, Integrating construction process documentation into building
    information modeling. Journal of Construction Engineering and Management-Asce, 2008.
    134(7): p. 509-516.
    53. Mills, F., What is 4D BIM 2016.
    54. Büchmann-Slorup, R. and N. Andersson. BIM-based scheduling of Construction–A
    comparative analysis of prevailing and BIM-based scheduling processes. in Proc., 27 th Int.
    Conf. of the CIB W78. 2010.
    55. Chau, K.W., M. Anson, and J.P. Zhang, Implementation of visualization as planning and
    scheduling tool in construction. Building and Environment, 2003. 38(5): p. 713-719.
    56. Tulke, J. and J. Hanff. 4D construction sequence planning–new process and data model. in
    Proceedings of CIB-W78 24th International Conference on Information Technology in
    Construction, Maribor, Slovenia. 2007.
    57. Whyte, J., Virtual reality and the built environment. 2002: Routledge.
    58. Whyte, J., Innovation and users: virtual reality in the construction sector. Construction
    Management and Economics, 2003. 21(6): p. 565-572.
    59. Webb, R.M., J. Smallwood, and T.C. Haupt, The potential of 4D CAD as a tool for construction
    management. Journal of Construction Research, 2004. 5(01): p. 43-60.
    60. Eastman, C., et al., Automatic rule-based checking of building designs. Automation in
    construction, 2009. 18(8): p. 1011-1033.
    61. Cerovsek, T., A review and outlook for a ‘Building Information Model’(BIM): A multistandpoint
    framework for technological development. Advanced engineering informatics,
    2011. 25(2): p. 224-244.
    62. Skibniewski, M.J., Information technology applications in construction safety assurance.
    Journal of Civil Engineering and Management, 2014. 20(6): p. 778-794.
    63. Allen, C. and J. Smallwood, Improving construction planning through 4D planning. Journal of
    Engineering, Design and Technology, 2008. 6(1): p. 7-20.
    64. van Nederveen, G.A. and F.P. Tolman, Modelling multiple views on buildings. Automation in
    Construction, 1992. 1(3): p. 215-224.
    65. Mukherjee, K. and R. Clarke, 4D construction planning. Chemeca 2012: Quality of life through
    chemical engineering: 23-26 September 2012, Wellington, New Zealand, 2012: p. 1443.
    66. Akinci, B., et al., Representing work spaces generically in construction method models.
    Journal of Construction Engineering and Management, 2002. 128(4): p. 296-305.
    67. Akinci, B., et al., Formalization and automation of time-space conflict analysis. Journal of
    Computing in Civil Engineering, 2002. 16(2): p. 124-134.
    65
    68. Winch, G.M. and S. North, Critical Space Analysis. Journal of Construction Engineering and
    Management, 2006. 132(5): p. 473-481.
    69. Choi, B., et al., Framework for Work-Space Planning Using Four-Dimensional BIM in
    Construction Projects. Journal of Construction Engineering and Management, 2014. 140(9).
    70. Dawood, N. and Z. Mallasi, Construction Workspace Planning: Assignment and Analysis
    Utilizing 4D Visualization Technologies. Computer-Aided Civil and Infrastructure Engineering,
    2006. 21(7): p. 498-513.
    71. Tantisevi, K. and B. Akinci, Automated generation of workspace requirements of mobile crane
    operations to support conflict detection. Automation in Construction, 2007. 16(3): p. 262-
    276.
    72. Bansal, V.K., Use of GIS and Topology in the Identification and Resolution of Space Conflicts.
    Journal of Computing in Civil Engineering, 2011. 25(2): p. 159-171.
    73. Koo, B., J. Kim, and J.I. Kim, An empirical study of MEP workspace modeling approaches for
    4D model-based time-space conflict analyses: Case study on the international linear collider
    project. Ksce Journal of Civil Engineering, 2013. 17(4): p. 627-637.
    74. Moon, H., V.R. Kamat, and L. Kang, Grid Cell-based Algorithm for Workspace Overlapping
    Analysis Considering Multiple Allocations of Construction Resources. Journal of Asian
    Architecture and Building Engineering, 2014. 13(2): p. 341-348.
    75. Chavada, R., N. Dawood, and M. Kassem, Construction workspace management: the
    development and application of a novel nD planning approach and tool. Journal of
    Information Technology in Construction, 2012.
    76. Kassem, M., N. Dawood, and R. Chavada, Construction workspace management within an
    Industry Foundation Class-Compliant 4D tool. Automation in Construction, 2015. 52: p. 42-58.
    77. Cheng, J.C., J. Won, and M. Das. Construction and demolition waste management using BIM
    technology. in International Group for Lean Construction Conference (IGLC), Perth, Australia.
    2015.
    78. Fard, M.G. and F. Peña-Mora, Application of visualization techniques for construction
    progress monitoring, in Computing in Civil Engineering (2007). 2007. p. 216-223.
    79. Kang, J.H., S.D. Anderson, and M.J. Clayton, Empirical study on the merit of web-based 4D
    visualization in collaborative construction planning and scheduling. Journal of Construction
    Engineering and Management, 2007. 133(6): p. 447-461.
    80. Golparvar-Fard, M., et al., Visualization of Construction Progress Monitoring with 4D
    Simulation Model Overlaid on Time-Lapsed Photographs. Journal of Computing in Civil
    Engineering, 2009. 23(6): p. 391-404.
    81. Benjaoran, V. and S. Bhokha, Enhancing visualization of 4D CAD model compared to
    conventional methods. Engineering, Construction and Architectural Management, 2009.
    16(4): p. 392-408.
    82. Chen, Y.-H., et al., Selection and evaluation of color scheme for 4D construction models.
    Journal of Information Technology in Construction (ITcon), 2013. 18(1): p. 1-19.
    66
    83. Chang, H.S., S.C. Kang, and P.H. Chen, Systematic procedure of determining an ideal color
    scheme on 4D models. Advanced Engineering Informatics, 2009. 23(4): p. 463-473.
    84. Zhou, W., et al., Model-Based Groupware Solution for Distributed Real-Time Collaborative 4D
    Planning through Teamwork. Journal of Computing in Civil Engineering, 2012. 26(5): p. 597-
    611.
    85. Huhnt, W., et al., Data management for animation of construction processes. Advanced
    Engineering Informatics, 2010. 24(4): p. 404-416.
    86. Kamat, V.R., et al., Research in Visualization Techniques for Field Construction. Journal of
    Construction Engineering and Management, 2011. 137(10): p. 853-862.
    87. Liang, X.O., M. Lu, and J.P. Zhang, On-site visualization of building component erection
    enabled by integration of four-dimensional modeling and automated surveying. Automation
    in Construction, 2011. 20(3): p. 236-246.
    88. Zanen, P.P.A., et al., Using 4D CAD to visualize the impacts of highway construction on the
    public. Automation in Construction, 2013. 32: p. 136-144.
    89. Boton, C., S. Kubicki, and G. Halin, Designing adapted visualization for collaborative 4D
    applications. Automation in Construction, 2013. 36: p. 152-167.
    90. Boton, C., S. Kubicki, and G. Halin, The Challenge of Level of Development in 4D/BIM
    Simulation Across AEC Project Lifecycle. A Case Study. Procedia Engineering, 2015. 123: p. 59-
    67.
    91. Kang, L.S., et al., Improved link system between schedule data and 3D object in 4D CAD
    system by using WBS code. Ksce Journal of Civil Engineering, 2010. 14(6): p. 803-814.
    92. Cai, J.P.a.H., Automatic Construction Schedule Generation Method through BIM Model
    Creation, in Computing in Civil Engineering 2015. 2015.
    93. Nikolic, D., S. Jaruhar, and J.I. Messner, Educational Simulation in Construction: Virtual
    Construction Simulator. Journal of Computing in Civil Engineering, 2011. 25(6): p. 421-429.
    94. Song, S., J. Yang, and N. Kim, Development of a BIM-based structural framework optimization
    and simulation system for building construction. Computers in Industry, 2012. 63(9): p. 895-
    912.
    95. Chen, S.M., et al., A framework for an automated and integrated project scheduling and
    management system. Automation in Construction, 2013. 35: p. 89-110.
    96. Moon, H., et al., Development of a schedule-workspace interference management system
    simultaneously considering the overlap level of parallel schedules and workspaces.
    Automation in Construction, 2014. 39: p. 93-105.
    97. Faghihi, V., K.F. Reinschmidt, and J.H. Kang, Construction scheduling using Genetic Algorithm
    based on Building Information Model. Expert Systems with Applications, 2014. 41(16): p.
    7565-7578.
    98. Kim, C., H. Son, and C. Kim, Automated construction progress measurement using a 4D
    building information model and 3D data. Automation in Construction, 2013. 31: p. 75-82.
    67
    99. Kim, H.J., et al., Generating construction schedules through automatic data extraction using
    open BIM (building information modeling) technology. Automation in Construction, 2013. 35:
    p. 285-295.
    100. Gelisen, G. and F.H. Griffis, Automated Productivity-Based Schedule Animation: Simulation-
    Based Approach to Time-Cost Trade-Off Analysis. Journal of Construction Engineering and
    Management, 2014. 140(4): p. 10.
    101. Moon, H., et al., BIM-Based Construction Scheduling Method Using Optimization Theory for
    Reducing Activity Overlaps. Journal of Computing in Civil Engineering, 2015. 29(3): p. 16.
    102. LiJuan, C. and L. Hanbin, A BIM-based construction quality management model and its
    applications. Automation in Construction, 2014. 46: p. 64-73.
    103. Monica CHHATWANI, M.G.-F., Model-Driven Management a of Construction Carbon
    Footprint: Case Study, in Construction Research Congress 2016. 2016.
    104. Benjaoran, V. and S. Bhokha, An integrated safety management with construction
    management using 4D CAD model. Safety Science, 2010. 48(3): p. 395-403.
    105. Kiviniemi, M., et al., BIM-based safety management and communication for building
    construction. VTT research notes, 2011. 2597.
    106. Hu, Z. and J. Zhang, BIM-and 4D-based integrated solution of analysis and management for
    conflicts and structural safety problems during construction: 2. Development and site trials.
    Automation in Construction, 2011. 20(2): p. 167-180.
    107. Zhang, J.P. and Z.Z. Hu, BIM- and 4D-based integrated solution of analysis and management
    for conflicts and structural safety problems during construction: 1. Principles and
    methodologies. Automation in Construction, 2011. 20(2): p. 155-166.
    108. Zhou, W., J. Whyte, and R. Sacks, Construction safety and digital design: A review.
    Automation in Construction, 2012. 22: p. 102-111.
    109. Guo, H.L., H. Li, and V. Li, VP-based safety management in large-scale construction projects: A
    conceptual framework. Automation in Construction, 2013. 34: p. 16-24.
    110. Collins, R., et al., Integration of safety risk factors in BIM for scaffolding construction, in
    Computing in Civil and Building Engineering (2014). 2014. p. 307-314.
    111. Zhang, S.J., et al., BIM-based fall hazard identification and prevention in construction safety
    planning. Safety Science, 2015. 72: p. 31-45.
    112. Kim, K., Y. Cho, and S. Zhang, Integrating work sequences and temporary structures into
    safety planning: Automated scaffolding-related safety hazard identification and prevention in
    BIM. Automation in Construction, 2016. 70: p. 128-142.
    113. Lu, M., et al., Integration of four-dimensional computer-aided design modeling and threedimensional
    animation of operations simulation for visualizing construction of the main
    stadium for the Beijing 2008 Olympic games. Canadian Journal of Civil Engineering, 2009.
    36(3): p. 473-479.
    114. Kang, L.S., et al., Development of methodology and virtual system for optimised simulation of
    road design data. Automation in Construction, 2010. 19(8): p. 1000-1015.
    68
    115. Jiang, X., DEVELOPMENTS IN COST ESTIMATING AND SCHEDULING IN BIM TECHNOLOGY. Civil
    Engineering Master's Theses Department of Civil and Environmental
    Engineering, Construction and Architectural Management, 2011.
    116. Nobuyoshi Yabuki, P.D., P.E., M.ASCE ; and Tomoaki Shitani, A Management System for Cut
    and Fill Earthworks Based on 4D CAD and EVMS, in Computing in Civil Engineering (2005).
    2005.
    117. Popov, V., et al., The use of a virtual building design and construction model for developing an
    effective project concept in 5D environment. Automation in Construction, 2010. 19(3): p. 357-
    367.
    118. Ma, Z.L., et al., Application and extension of the IFC standard in construction cost estimating
    for tendering in China. Automation in Construction, 2011. 20(2): p. 196-204.
    119. Staub-French, S. and A. Khanzode, 3D and 4D modeling for design and construction
    coordination: issues and lessons learned. Journal of Information Technology in Construction
    (ITcon), 2007. 12(26): p. 381-407.
    120. Dorée, L.L.O.S.T.H.a.A.G., Comparing Mindfulness in Manual and 4D-Supported Coordination
    Practices, in Construction Research Congress 2014. 2014.
    121. Scholtenhuis, L.L.o., T. Hartmann, and A.G. Dorée, Testing the Value of 4D Visualizations for
    Enhancing Mindfulness in Utility Reconstruction Works. Journal of Construction Engineering
    and Management, 2016. 142(7).
    122. Trebbe, M., T. Hartmann, and A. Doree, 4D CAD models to support the coordination of
    construction activities between contractors. Automation in Construction, 2015. 49: p. 83-91.
    123. Scholtenhuis, L.L.O., T. Hartmann, and A.G. Doree, 4D CAD Based Method for Supporting
    Coordination of Urban Subsurface Utility Projects. Automation in Construction, 2016. 62: p.
    66-77.
    124. Chin, S., et al., RFID+4D CAD for progress management of structural steel works in high-rise
    buildings. Journal of Computing in Civil Engineering, 2008. 22(2): p. 74-89.
    125. Rebolj, D., et al., Automated construction activity monitoring system. Advanced Engineering
    Informatics, 2008. 22(4): p. 493-503.
    126. Golparvar-Fard, M., F. Peña-Mora, and S. Savarese, D4AR–a 4-dimensional augmented reality
    model for automating construction progress monitoring data collection, processing and
    communication. Journal of information technology in construction, 2009. 14(13): p. 129-153.
    127. Golparvar-Fard, M., S. Savarese, and F. Peña-Mora. Automated model-based recognition of
    progress using daily construction photographs and IFC-based 4D models. in Construction
    Research Congress 2010: Innovation for Reshaping Construction Practice. 2010.
    128. Golparvar-Fard, M., F. Peña-Mora, and S. Savarese, Integrated Sequential As-Built and As-
    Planned Representation with D4AR Tools in Support of Decision-Making Tasks in the AEC/FM
    Industry. Journal of Construction Engineering and Management, 2011. 137(12): p. 1099-
    1116.
    69
    129. Bosche, F., Automated recognition of 3D CAD model objects in laser scans and calculation of
    as-built dimensions for dimensional compliance control in construction. Advanced
    Engineering Informatics, 2010. 24(1): p. 107-118.
    130. Turkan, Y., et al., Toward Automated Earned Value Tracking Using 3D Imaging Tools. Journal
    of Construction Engineering and Management-Asce, 2013. 139(4): p. 423-433.
    131. Bosche, F., et al., Tracking the Built Status of MEP Works: Assessing the Value of a Scan-vs.-
    BIM System. Journal of Computing in Civil Engineering, 2014. 28(4): p. 13.
    132. Kim, C., B. Kim, and H. Kim, 4D CAD model updating using image processing-based
    construction progress monitoring. Automation in Construction, 2013. 35: p. 44-52.
    133. Golparvar-Fard, M., F. Pena-Mora, and S. Savarese, Automated Progress Monitoring Using
    Unordered Daily Construction Photographs and IFC-Based Building Information Models.
    Journal of Computing in Civil Engineering, 2015. 29(1): p. 19.
    134. Han, K.K., D. Cline, and M. Golparvar-Fard, Formalized knowledge of construction sequencing
    for visual monitoring of work-in-progress via incomplete point clouds and low-LoD 4D BIMs.
    Advanced Engineering Informatics, 2015. 29(4): p. 889-901.
    135. Han, K.K. and M. Golparvar-Fard, Appearance-based material classification for monitoring of
    operation-level construction progress using 4D BIM and site photologs. Automation in
    Construction, 2015. 53: p. 44-57.
    136. Kang, L.S., et al., Managing construction schedule by telepresence: Integration of site video
    feed with an active nD CAD simulation. Automation in Construction, 2016. 68: p. 32-43.
    137. de Vries, B. and J.M.J. Harink, Generation of a construction planning from a 3D CAD model.
    Automation in Construction, 2007. 16(1): p. 13-18.
    138. Staub-French, S., A. Russel, and N. Tran, Linear scheduling and 4D visualization. Journal of
    Computing in Civil Engineering, 2008. 22(3): p. 192-205.
    139. Kim, C., et al., Applicability of 4D CAD in Civil Engineering Construction: Case Study of a Cable-
    Stayed Bridge Project. Journal of Computing in Civil Engineering, 2011. 25(1): p. 98-107.
    140. Kang, L., et al., Development of Improved 4D CAD System for Horizontal Works in Civil
    Engineering Projects. Journal of Computing in Civil Engineering, 2013. 27(3): p. 212-230.
    141. Mawlana, M., et al., Integrating 4D modeling and discrete event simulation for phasing
    evaluation of elevated urban highway reconstruction projects. Automation in Construction,
    2015. 60: p. 25-38.
    142. Zhou, Y., et al., Applicability of 4D modeling for resource allocation in mega liquefied natural
    gas plant construction. Automation in Construction, 2015. 50: p. 50-63.
    143. Su, X. and H.B. Cai, Enabling Construction 4D Topological Analysis for Effective Construction
    Planning. Journal of Computing in Civil Engineering, 2016. 30(1): p. 10.
    144. Chau, K., M. Anson, and D. De Saram, 4D dynamic construction management and
    visualization software: 2. Site trial. Automation in construction, 2005. 14(4): p. 525-536.
    70
    145. Ma, Z.Y., Q.P. Shen, and J.P. Zhang, Application of 4D for dynamic site layout and
    management of construction projects. Automation in Construction, 2005. 14(3): p. 369-381.
    146. Tantisevi, K. and B. Akinci, Transformation of a 4D product and process model to generate
    motion of mobile cranes. Automation in Construction, 2009. 18(4): p. 458-468.
    147. Kumar, S.S. and J.C.P. Cheng, A BIM-based automated site layout planning framework for
    congested construction sites. Automation in Construction, 2015. 59: p. 24-37.
    148. Marzouk, M. and A. Abubakr, Decision support for tower crane selection with building
    information models and genetic algorithms. Automation in Construction, 2016. 61: p. 1-15.
    149. Li, Y.L.a.S., Research on Virtual Construction in the Construction Phase and Its 4D LOD
    Analysis, in ICCREM 2013. 2013.
    150. Dawood, R.M.J.D.a.N., Application of Visualisation Tools in Project Management in
    Construction Industry: Innovation and Challenges, in Computing in Civil Engineering (2007).
    2007.
    151. Sugimoto, Y., et al., 4D CAD-based evaluation system for crane deployment plans in
    construction of nuclear power plants. Automation in Construction, 2016. 71: p. 87-98.
    152. Huang, T., et al., A virtual prototyping system for simulating construction processes.
    Automation in construction, 2007. 16(5): p. 576-585.
    153. Turkan, Y., et al. Towards automated progress tracking of erection of concrete structures. in
    Proceedings of the 6th International Conference on Innovation in Architecture, Engineering &
    Construction (AEC’10), State College, PA, USA. 2010.
    154. Bosché, F., et al. Fusing 4D modelling and laser scanning for construction schedule control. in
    Proc. of the 26th Annual Conf. Association of Researchers in Construction Management
    (ARCOM 2010). 2010.
    155. Golparvar-Fard, M., F. Peña-Mora, and S. Savarese, Monitoring of construction performance
    using daily progress photograph logs and 4D as-planned models, in Computing in Civil
    Engineering (2009). 2009. p. 53-63.
    156. Hartmann, T., et al., Aligning building information model tools and construction management
    methods. Automation in Construction, 2012. 22: p. 605-613.
    157. Bansal, V.K., Application of geographic information systems in construction safety planning.
    International Journal of Project Management, 2011. 29(1): p. 66-77.
    158. Bansal, V.K. and M. Pal, Generating, evaluating, and visualizing construction schedule with
    geographic information systems. Journal of Computing in Civil Engineering, 2008. 22(4): p.
    233-242.
    159. Chua, D.K.H., K.W. Yeoh, and Y.B. Song, Quantification of Spatial Temporal Congestion in
    Four-Dimensional Computer-Aided Design. Journal of Construction Engineering and
    Management-Asce, 2010. 136(6): p. 641-649.
    160. Jongeling, R., et al., Quantitative analysis of workflow, temporary structure usage, and
    productivity using 4D models. Automation in Construction, 2008. 17(6): p. 780-791.
    71
    161. Garrido4, S.S.R.M.J.T.F.C.M.C., On-Site BIM Model Use to Integrate 4D/5D Activities and
    Construction Works: A Case Study on a Brazilian Low Income Housing Enterprise, in
    Computing in Civil and Building Engineering (2014). 2014.
    162. Hu, Z., J. Zhang, and Z. Deng, Construction process simulation and safety analysis based on
    building information model and 4D technology. Tsinghua Science & Technology, 2008. 13: p.
    266-272.
    163. Golparvar-Fard, K.K.H.a.M., Multi-Sample Image-Based Material Recognition and Formalized
    Sequencing Knowledge for Operation-Level Construction Progress Monitoring, in Computing
    in Civil and Building Engineering (2014). 2014.
    164. Golparvar-Fard, K.K.H.a.M., Automated Monitoring of Operation-level Construction Progress
    Using 4D BIM and Daily Site Photologs, in Construction Research Congress 2014. 2014.
    165. Zhang, C. and D. Arditi, Automated progress control using laser scanning technology.
    Automation in Construction, 2013. 36: p. 108-116.
    166. Bosche, F., Plane-based registration of construction laser scans with 3D/4D building models.
    Advanced Engineering Informatics, 2012. 26(1): p. 90-102.
    167. Ciribini, A.L.C., S.M. Ventura, and M. Paneroni, Implementation of an interoperable process to
    optimise design and construction phases of a residential building: A BIM Pilot Project.
    Automation in Construction, 2016. 71: p. 62-73.
    168. Zhang, S., et al., Building information modeling (BIM) and safety: Automatic safety checking
    of construction models and schedules. Automation in Construction, 2013. 29: p. 183-195.
    169. Kang, L.S., et al., Development of a 4D object-based system for visualizing the risk information
    of construction projects. Automation in Construction, 2013. 31: p. 186-203.
    170. Mohammad Kasirossafar1, A.A.a.R.L.S., Developing the Sustainable Design with PtD Using
    3D/4D BIM Tools, in World Environmental and Water Resources Congress 2012. 2012.
    171. Sulankivi, K., et al. 4D-BIM for construction safety planning. in Proceedings of W099-Special
    Track 18th CIB World Building Congress. 2010.
    172. Yun, S.-h., et al., Preliminary study for performance analysis of BIM-based building
    construction simulation system. KSCE Journal of Civil Engineering, 2014. 18(2): p. 531.
    173. Rohani, M., M.Z. Fan, and C. Yu, Advanced visualization and simulation techniques for
    modern construction management. Indoor and Built Environment, 2014. 23(5): p. 665-674.
    174. Kubicki, C.B.G.H.a.S., Characterizing Collaborative 4D Use Contexts to Improve Interaction
    Mechanisms Design, in Computing in Civil and Building Engineering (2014). 2014.
    175. Montaser, A. and O. Moselhi, Methodology for automated generation of 4D BIM.
    international conference, 2015.

    QR CODE
    :::