跳到主要內容

簡易檢索 / 詳目顯示

研究生: 余泰榮
Tai-Rong Yu
論文名稱: 交流白光非晶碳氫與氮化矽氫薄膜發光二極體之研製
Design and Fabrication of a-C:H and a-SiN:H Alternating-Current White Thin-film Light-Emitting Diodes
指導教授: 洪志旺
Jyh-Wong Hong
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 94
語文別: 英文
論文頁數: 73
中文關鍵詞: 氮化矽氫交流薄膜發光二極體白光非晶碳氫
外文關鍵詞: white light, alternating-current, TFLED, amorphous SiN, amorphous carbon
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主要目的是研製交流白光非晶質薄膜發光二極體。在現階段,我們成功地運用一層很薄的本質非晶碳氫或氮化矽氫做為發光層,且利用PECVD系統在位氫電漿處理發光層薄膜,提高薄膜中的氫含量以及修補懸鍵,進而改善元件發光效率。實驗結果顯示,適當的氫電漿處理確實能有效改善元件特性,大幅提升元件發光效率。同時我們也對元件電性做一系列量測,包括發光亮度、發光頻譜以及交流頻率響應等。量測結果顯示,不同大小的電壓幾乎不會改變發光波段,但是隨著交流頻率的增加卻會導致發光頻譜出現紅移的現象。


    The alternating-current (AC) white amorphous thin-film light-emitting diodes have been designed and fabricated in this study. We had successfully used the very thin i-a-C:H (device 1) and i-a-SiN:H (device 2) films as the luminescent layer individually and applied in-situ hydrogen plasma treatment on film to increase its hydrogen concentration, passivate the dangling bonds in the film and hence improve device optoelectronic characteristics. From the experiment results, it was evident a proper hydrogen plasma treatment process could be used to improve the device performance. In addition, a series of measurements including brightness, electroluminescence (EL) spectrum, and frequency response had been taken to investigate the device characteristics. The results showed that the peak wavelength of device EL spectrum was almost independent of the applied-voltage. However, the EL spectrum would be red-shifted with the increasing AC frequency.

    Chapter 1 INTRODUCTION………………………………………………………………………1 Chapter 2 EXPERIMENTAL PROCEDURES…………………………………………………………3 2.1 Preparations of Various Thin-Films……………………………………………………3 2.1.1 Deposition System……………………………………………………………3 2.1.2 Depositions of a-Si:H, a-SiC:H, a-C:H, and a-SiN:H Films………3 2.2 Device Synopsis…………………………………………………………………8 2.3 Device Fabrication……………………………………………………………13 2.4 Measurement Techniques………………………………………………………15 2.4.1 Optical Bandgap of Amorphous Film…………………………15 2.4.2 EL Intensity and Brightness…………………………………15 2.4.3 EL Spectrum and Frequency Response………………………15 2.4.4 Brightness Under Alternating-Current Operation………16 2.4.5 Electrical Circuit of Output Buffer………………………16 Chapter 3 RESULTS AND DISCUSSION…………………………………………………………22 3.1 Device 1 with i-a-C:H luminescent layer……………………………………………22 3.1.1 Effects of H2-plasma treatment on i-a-C:H or carbon-decreasing layer…22 3.1.2 EL Spectrum………………………………………………………………………………30 3.1.3 Measurement for AC Frequency Response……………………………………………34 3.2 Device 2 with i-a-SiN:H luminescent layer……………………………40 3.2.1 Effects of H2-plasma treatment on i-a-SiN:H layer……40 3.2.2 EL Spectrum………………………………………………………40 3.2.3 Measurement for AC Frequency Response……………………47 Chapter4 CONCLUSION…………………………………………………………………………54 REFERENCES………………………………………………………………………………………56

    [1] R. J. Xie, N. Hirosaki, M. Mitomo, K. Takahashi, and K. Sakuma, “Highly efficient white-light-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors,” Appl. Phys. Lett., Vol. 88, pp. 101104-1-101104-3, 2006.
    [2] T. Ma, J. Xu, J. Du, W. Li, X. Huang, and K. Chen, “Full color light emission from amorphous SiCx:H with organic-inorganic structures,” J. Appl. Phys., Vol. 88, pp. 6408-6412, 2000.
    [3] Y. Z. Wang, D. D. Gebler, L. B. Lin, J. W. Blatchford, S. W. jessen, H. L. Wang, and A. J. Epstein, “Alternating-current light-emitting devices based on conjugated polymers,” Appl. Phys. Lett., Vol. 68, pp. 894-896, 1996.
    [4] R. Österbacka, A. J. Pal, K.-M. Källman, and H. Stubb, “Frequency response of molecularly thin alternating current light-emitting diodes,” J. Appl. Phys., Vol. 83, pp. 1748-1752, 1998.
    [5] A. J. Pal, R. Österbacka, K.-M. Källman, and H. Stubb, “High-frequency response of polymeric light-emitting diodes,” Appl. Phys. Lett., Vol. 70, pp. 2022-2024, 1997.
    [6] N. F. Mott and E. A. Davis, “Electronic Processes in Non-Crystalline Materials,” 2nd ed., chap. 6, Oxford University Press, pp. 288, 1979.
    [7] C. Casiraghi, A. C. Ferrari, and J. Robertson, “Raman spectroscopy of hydrogenated amorphous carbons,” Phys. Rev. B, Vol. 72, pp. 085401-1-085401-14, 2005.
    [8] J. Xu, J. Mei, X. Huang, W. Li, Z. Li, X. Li, and K. Chen, “The change of photoluminescence characteristics of amorphous carbon films due to hydrogen dilution,” J. Non-Cryst. Solids, Vol. 338-340, pp. 481-485, 2004.
    [9] M. Koos, M. Veres, M. Füle, and I. Pocsik, “Ultraviolet photoluminescence and its relation to atomic bonding properties of hydrogenated amorphous carbon,” Diamond Relat. Mater., Vol. 11, pp. 53-58, 2002.
    [10] J. Robertson, “Photoluminescence mechanism in amorphous hydrogenated carbon,” Diamond Relat. Mater., Vol. 5, pp. 457-460, 1996.
    [11] S. B. Kim and J. F. Wager, “Electroluminescence in diamond-like carbon films,” Appl. Phys. Lett., Vol. 53, pp. 1880-1881, 1988.
    [12] R. Reyes, C. Legnani, P. M. Ribeiro Pinto, M. Cremona, P. J. G. de Araújo, and C. A. Achete, “Room-temperature low-voltage electroluminescence in amorphous carbon nitride thin films,” Appl. Phys. Lett., Vol. 82, pp. 4017-4019, 2003.
    [13] A. P. Li, L. Zhang, Y. X. Zhang, G. G. Qin, X. Wang, and X. W. Hu, “Electroluminescence from Au/Si nitride film/Si with the film prepared by electron cyclotron resonance method,” Appl. Phys. Lett., Vol. 69, pp. 4-6, 1996.
    [14] S. V. Deshpande, E. Gulari, S. W. Brown, and S. C. Rand, “Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition,” J. Appl. Phys., Vol. 77, pp. 6534-6541, 1995.
    [15] D. Kruangam, T. Endo, M. Deguchi, W. Guang-Pu, H. Okamoto, and Y. Hamakawa, “Amorphous Silicon-Carbide Thin-Film Light Emitting Diode,” Optoelectronics Devices and Technologies, Vol. 1, No. 1, pp. 67-84, 1986.
    [16] D. C. Chung, “Optoelectronic Characteristics of Green-Blue-White a-SiN:H-based p-i-n Thin-Film Light-Emitting Diodes,” M. S. Thesis, NCU, Taiwan, R.O.C., 1998.
    [17] J. Y. Chen, “The Effect of Graded-Gap and Barrier Layer Structure on the Electroluminescence Properties of a-SiC:H p-i-n Thin-Film Light Emitting Diode,” M. S. Thesis, NCU, Taiwan, R.O.C., 1992.
    [18] D. Kruangam, T. Endo, M. Deguchi, W. Guang-Pu, H. Okamoto, and Y. Hamakawa, “Amorphous Silicon-Carbide Thin-Film Light Emitting Diode,” Optoelectronics Devices and Technologies, Vol. 1, No. 1, pp. 67-84, 1986.
    [19] C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett., Vol. 70, pp. 1348-1350, 1997.
    [20] J. Tauc, Amorphous and Liquid Semiconductors, chap. 5, Plenum Press, pp. 175, 1974.
    [21] J. W. Lee and K. S. Lim, “In situ hydrogenation of visible a-SiC:H-based p-i-n type thin-film light-emitting diodes using the photochemical vapour deposition method,” Semicond. Sci. Techonl., Vol. 11, pp. 597-600, 1996.
    [22] J. W. Lee and K. S. Lim, “Dramatic improvement of performance of visible hydrogenated amorphous silicon carbide based p-i-n thin-film light-emitting diodes by two-step hydrogenation,” Appl. Phys. Lett., Vol. 69, pp.547-549, 1996.
    [23] J. Kanicki, “Amorphous and Microcrystalline Semiconductor Devices Volume Ⅱ : Materials and Device Physics,” Chap.5, Artech House, 1992.

    QR CODE
    :::