| 研究生: |
施智雄 Jhih-Syong Shih |
|---|---|
| 論文名稱: |
利用鹼和Aspergillus niger處理稻稈以提升甲烷生產於厭氧共發酵系統 |
| 指導教授: |
徐敬衡
Chin-Hang Shu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 稻桿 、前處理 、甲烷生產 |
| 外文關鍵詞: | rice straw, pretreatment, Methane production |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用農業廢棄物進行甲烷厭氧發酵逐漸受到全球的重視並且正積極研究中,由於它具有許多經濟與環境上的優點,然而木質纖維素難以被生物所降解,須要透過前處理的方式改善它的生物降解性。
在本實驗中,利用鹼(NaOH)預處理及Aspergillus niger生物預處理的方式處理稻稈,探討經過稻稈經過不同預處理方式後,對稻稈的組成的變化和甲烷產氣的影響。
由結果顯示,利用鹼和Aspergillus niger生物預處理稻稈方式處理稻稈被證明是個有效的方法且改善了稻稈的生物可降解性和提升了甲烷的產氣量和縮短了產氣時間。其中鹼處理稻稈再經過5天的生物預處理有最高的甲烷產氣量為1834.20 mL和最高的還原醣累積量為2.229 g/l,與未處理稻稈相比,甲烷氣的產量增加了3.17倍。稻稈經鹼處理後移除了45.5%的木質素含量,之後經過5天和10天的生物預處理後,鹼處理後的稻稈纖維素組成從一開始的81.13% 減少至72.86%和60.97%,這結果說明了經過鹼預處理與生物預處理後,有效改善了稻稈的生物可降解性與提升了甲烷的產量。
Methane production from a variety of agricultural wastes through
anaerobic digestion technology is growing worldwide and is actively studying because of its economic and environmental benefits. However, lignocelluloses is difficultly to use by microorganism, so we have to improve its biodegradability through the pretreatment.
In this research, we investigated the effects of alkali (NaOH) and the biological treatment of rice straw using Aspergillus niger in terms of the changes in the components of the treated rice straw and the effect of the methane production .
According to this study, the alkali (NaOH) and biological pretreatment with Aspergillus niger proved to be an efficient method to improve biodegradability and to enhance the biogas production of rice straw and the methane production time were shortened. Alkali treatment and then after five days biological pretreatment of rice straw has the highest methane production, it is 1834.20 mL and the highest cumulative amount of reducing sugars is 2.229 g / l. Compared to untreated controls the pretreated rice straw yielded by 3.17 times more methane production. The alkali (NaOH) pretreatment of rice straw was removed 45.5% of the lignin content, and then after 5 and 10 days biological pretreatment of rice straw, the cellulose contents was reduced from 81.13% to 72.86% and 60.97%, respectively. This result shows that the biodegradability of rice straw and enhanced methane production were improved through alkaline pretreatment and biological pretreatment.
齊倍慶,2001。從堆肥中篩選纖維素分解酵素生產菌及其酵素性
質研究,清華大學生命科學所,碩士論文。
蘇遠志、黃世佑,1997。微生物化學工程學,台北市。pp. 74-75。
1971-2009年 台灣地區養豬頭數與戶數.行政院農業委員會農糧署. 2008.
Acharya P. B., Acharya D. K. and Modi H. A. Optimization for cellulase production by Aspergillus niger using saw dust as substrate. African Journal of Biotechnology. 2008. 7 (22) : 4147-4152.
Ahamed, A., Vermette, P. Culture based strategies to enhance cellulose enzyme production from Trichoderma reesei RUT-30 in bioreactor culture conditions. Biochem. Eng. J. 2008. 140:399–407.
Alvarez, R., Liden, G. Anaerobic co-digestion of aquatic flora and quinoa with manures from Bolivian Altiplano. Waste Manage. 2008. 28: 1933–1940.
Anderson, J.L., Ding , J., Welton, T., Armstrong, D.W. Characterizing ionic liquids on the basis of multiple solvation interactions. Journal of the American Chemical Society. 2002. 124: 14247-14254.
Angelidaki I., Ahring B.K., Deng H. and Schmidt J.E. Anaerobic digestion of olive oil mill effluents together with swine manure in UASB reactors. Water Science Technology. 2002. 45: 213–218.
Anonymous. Planning and installing bioenergy systems – a guide for installers, architects and engineers. UK & USA: German Solar Energy Society (DGS) and Ecofys, James & James Science Publishers Ltd.; 2005.
Anonymous. Methane generation from human, animal and agricultural wastes. Washington DC, USA: National Academy of Sciences; 1977.
Antizar-Ladislao B, Turrion-Gomez JL. Second-generation biofuels and local bioenergy systems. Biofuels Bioproducts & Biorefining-Biofpr 2008. 2(5):455-69.
Azuma, J., Tanaka, F., Koshijima, T. Enhancement of enzymatic susceptibility of lignocellulosic wastes by microwave irradiation. J. Ferment. Technol. 1984. 62: 377–384.
Biogas as vehicle fuel: a European overview. Trendsetter report no. 2003:3. Stockholm; October 2003.
Chandra R., Takeuchi H., Hasegawa T. Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renewable and Sustainable Energy Reviews. 2012. 16: 1462– 1476.
Chandra R., Takeuchi H., Hasegawa T. Hydrothermal pretreatment of rice straw biomass: A potential and promising method for enhanced methane production. Applied Energy. 2012. 94 :129–140.
Chandra R, Takeuchi H, Hasegawa T. Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. J Renew Sustain Energy Rev 2011. 2011.
Chen WH, Pen BL, Yu CT, Hwang WS. Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute-acid and steam explosion for bioethanol production. Bioresource Technology. 2011.102:2916-24.
Converti A, Oliveira RPS, Torres BR, Lodi A, Zilli M. Biogas production and valorization by means of a two-step biological process. Bioresource Technology. 2009. 100(23): 5771-6.
Demirel B, Yenigun O. The effects of change in volatile fatty acid (VFA) composition on methanogenic upflow filter reactor (UFAF) performance. Environ Technol. 2002. 23:1179–87.
Deswal, D., Khasa, Y.P., Kuhad, R.C. Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour. Technol. 2011. 102: 6065–6072.
Deublein D, Steinhauser A. Biogas from waste and renewable sources: an introduction. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA; 2008.
Fang Chen, Richard A Dixon. Lignin modification improves fermentable sugar yields for biofuel production. Nature Biotechnology. 2007. 25: 759 – 761.
Faveri, D.D., Torre, P., Perego, P., Converti, A. Statistical investigation on the effects of starting xylose concentration and oxygen mass flow rate on xylitol production from rice straw hydrolyzate by response surface methodology. J. Food Eng. 2004. 65: 383–389.
Fezzani B, Ben Cheikh R. Two-phase anaerobic co-digestion of olive mill wastes in semi-continuous digesters at mesophilic temperature. Bioresour Technol. 2010. 101:1628-34.
Frigon, J.-C., Guiot, S.R. Biomethane production from starch and lignocellulosic crops a comparative review. Biofuels. Bioprod. Bioref. 2010. 4: 447–458.
Garrote, G., Dominguez, H., Parajo, J.C. Autohydrolysis of corncob: study of non-isothermal operation for xylooligosaccharide production. J. Food Eng. 2002. 52: 211–218.
Gaspar, M., Kalman, G., Reczey, K. Corn fibre as a raw material for hemicellulose and ethanol production. Process Biochem. 2007. 42: 1135–1139.
Gelegenis, J., Georgakakis, D., Angelidaki, I., Mavris, V. Optimization of biogas production by co-digesting whey with diluted poultry manure. Renew. Energy. 2007. 32: 2147–2160.
Gerardi MH. The microbiology of anaerobic digesters, waste water microbiology series Hoboken, New Jersey: John Wiley & Sons, Inc; 2003.
Haan RD, Rose SH, Lynd LR, Zyl WHV. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metabolic Engineering. 2007. 9:87-94.
Hendriks, A., Zeeman, G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 2009. 100:10–18.
Jung E., Lao G., Irwin D., Barr B.K., Benjamin G.S. and Wilson D.B., DNA sequence and expression in Streptomyces lividans of anexogluc-anase gene and an endoglucocanse gene from Thermomonosporafusca.Appl. Environ. Microbiol. 1993. 59:3032-3043.
Kamm B, Gruber PR, Kamm M. Biorefinery industrial processes and products, status and future direction. Weinheim: Wiley-Verlay Gmbtt and Co KGaA; 2006. Vol. 1–2
Kaparaju, P., Rintala, J. Anaerobic co-digestion of potato tuber and its industrial by-products with pig manure. Resour. Conserv. Recyl. , 2005. 43: 175–188.
Kim, S., Dale, B.E., Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy. 2004. 26: 361–375.
Kuo CH, Lee CK. Enhancement of enzymatic hydrolysis of bagasse by N-methylmorpholine-N-oxide pretreatment step. The 13th Biochemical Engineering Conference. 2008.
Lehtomaki, A., Huttunena, S., Rintala, J.A. Laboratory investigations on codigestion of energy crops and crop residues with cow manure for methane production: Effect of crop to manure ratio. Resour. Conserv. Recyl. 2007. 51: 591–609.
Maiorella, B.I. Ethanol industrial chemicals. Biochem. Fuels. 1983. 861–914.
Maiorella, B.L. Ethanol. In: Moo-Young, M. Comprehensive
Biotechnology. Pergamon Press, Oxford. 1985. pp. 861–914.
Mansfield SD, Mooney C, Saddler JN. Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnology Progress. 1999. 15:804-16.
McCarty PL. Anaerobic waste treatment fundamentals, Part I – chemistry and microbiology. Journal of Public Works. 1964. 95:107–12.
McIntosh S., Vancov T. Optimisation of dilute alkaline pretreatment for enzymatic saccharification of wheat straw. Biomass Bioenergy. 2011. 35: 3094–3103.
Midilli A, Dincer I, Ay M. Green energy strategies for sustainable development. Energy Policy. 2006. 34(18):3623-33.
Mital KM. Biogas systems: principles and applications. New Delhi, India: New Age International (P) Limited; 1996.
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 2005. 96: 673–686.
Mussatto, S.I., Fernandes, M., Milagres, A.M.F., Roberto, I.C., Effect of hemicellulose and lignin on enzymematic hydrolysis of cellulose from brewer’s spent grain. Enzyme Microb. Technol. 2008. 43: 124–129.
Namita Bansal , Rupinder Tewari , Raman Soni , Sanjeev Kumar Soni. Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Management. 2012. 32 :1341–1346.
Ooshima, H., Aso, K., Harano, Y. Microwave treatment of cellulosic materials for their enzymatic hydrolysis. Biotechnol. Lett. 1984. 6: 289–294.
Pang YZ, Liu YP, Li XJ, Wang KS, Yuan HR. Improving biodegradability and biogas production of corn stover through sodium hydroxide solid state pretreatment. J Energy Fuels. 2008. 22:2761–6.
Parkin, G.F., and W.F. Owen. Fundamentals of anaerobic digestion of wastewater sludges. J. Environ. Eng. 1986. 112:867–920.
Pavlostathis, S.G., Gossett, J.M. Alkaline treatment of wheat straw for increasing anaerobic biodegradability. Biotechnol. Bioeng. 1985. 27: 334–344.
Prasad, S., Singh, A., Joshi, H.C. Ethanol as an alternative fuel from
agricultural, industrial, and urban residues. Resour. Conserv. Recycl. 2007. 50: 1–39.
Ren NQ, Liu M, Wang AJ, Ding J, Hong M. Organic acids conversion in methanogenic - phase reactor of the two phase anaerobic process. Environ Sci 2003. 24:89–93.
Ren NQ, Wang AJ, Ma F. Acid-producing fermentative microbe physiological ecology. Beijing: Science Press; 2005 [in Chinese].
Saha, B.C. Hemicellulose bioconversion. Ind. Microbiol. Biotechnol. 2003. 30: 279–291.
Sánchez. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances. 2009. 27:185–194.
Schwarz WH. The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol. 2001. 56:634-49.
Siegert, I., Banks, C. The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochem. 2005. 40 (11) : 3412–3418.
Sumphanwanich, J., Leepipatpiboon, N., Srinorakutara, T., Akaracharanya, A. Evaluation of dilute-acid pretreated bagasse, corn cob and rice straw for ethanol fermentation by Saccharomyces cerevisiae. Ann. Microbiol. 2008. 58: 219–225.
Sun Y., Cheng J. Hydrolysis of Lignocellulosic Materials for Ethanol Production: A Review. Bioresour. Tech., 2002. 83: 1-11.
Suto M. and Tomita F.Induction and catabolite repression mechanisms of cellulase in fungi.J.Biosci.Bioeng. 2001. 92: 305-311.
Take, H., Andou, Y., Nakamura, Y., Kobayashi, F., Kurimoto, Y., Kuwahara, M. Production of methane gas from Japanese cedar chips pretreated by various delignification methods. Biochem. Eng. J. 2006. 28: 30–35.
Taniguchi, M., Suzuki, H., Watanabe, D., Sakai, K., Hoshino, K., Tanaka, T. Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice Straw. J. Biosci. Bioeng. 2005.100: 637–643.
Tarkov, H., Feist, W.C. A mechanism for improving the digestibility of lignocellulosic materials with dilute alkali and liquid ammonia. Adv. Chem. Ser. 1969. 95: 197–218.
Unsitalo J.M., Nevalainen K.M., Harkki A.M., KnowlesK.C.,andPenttila M.E. Enzyme production by recombinantTrichoderma reeseistrains.J. Biotechnol. 1991. 17:35-50.
Weil J, Westgate P, Kohlmann K, Ladisch MR. Cellulose pretreatments of lignocellulosic substrates. Enzyme and Microbial Technology. 1994; 16: 1002-4.
Weizhang Zhong, Zhongzhi Zhang , Wei Qiao, Pengcheng Fu, Man Liu. Comparison of chemical and biological pretreatment of corn straw for biogas production by anaerobic digestion. Renewable Energy. 2011. 1875-1879.
Weizhang Zhong, Zhongzhi Zhang , Yijing Luo, Shanshan Sun, Wei Qiao, Meng Xiao., Effect of biological pretreatments in enhancing corn straw biogas production. Bioresource Technology. 2011. 102: 11177–11182.
Xiong, J., Ye, J., Liang, W.Z., Fan, P.M. Influence of microwave on the ultrastructure of cellulose I. J. South China Univ. Technol. 2000. 28: 84–89.
Yuanyuan Wang, Yanlin Zhang, Jianbo Wang, Liang Meng. Effects of volatile fatty acid concentrations on methane yield
and methanogenic bacteria. Biomass and bioenergy. 2009 . 33: 848–853.
Zamora, R., Crispin, J.A.S. Production of an acid extract of rice straw. Acta Cient. Venez. 1995. 46: 135–139.
Zeikus JG. The biology of methanogenic bacteria. Journal of Bacteriological Reviews. 1977. 41:514–41.
Zhang, Q.Z., Cai, W.M. Enzymatic hydrolysis of alkali-pretreated rice straw by Trichoderma reesei ZM4-F3. Biomass Bioenergy. 2008. 32: 1130–1135.
Zhang YHP, Lynd LR. Toward an Aggregated Understanding of Enzymatic Hydrolysis of Cellulose:Noncomplexed Cellulase Systems. Biotechnology and Bioengineering. 2004. 88:797-824.