| 研究生: |
王君善 Chun-Shan Wang |
|---|---|
| 論文名稱: |
應用自然語言處理技術開發基於知識翻新理論之線上非同步合作論證平台與平台初步評估 |
| 指導教授: |
吳穎沺
Ying-Tien WU |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 網路學習科技研究所 Graduate Institute of Network Learning Technology |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 自然語言技術 、知識翻新理論 、合作論證 、線上非同步合作論證 |
| 外文關鍵詞: | NLP, Knowledge Building Theory, Collaborative Argumentation, Online Asynchronous Collaborative Argumentation |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技與社會的蓬勃發展,我們面對的問題也日益複雜,這些問題龐大且難以靠個人的努力進行解決,為此研製線上非同步合作論證系統來推動學生學習論證與團隊技巧。為了系統能引導學生正確論證或警示錯誤論證行為,本論文使用NLP技術研發言論與行為分析功能,進而促進團隊意識凝聚與進行良性討論,提升團隊解決問題的能力,主要設計有包含合作論證鷹架、言論分析、情緒分析等,協助使用者進行合作論證活動,並以該系統做為討論環境舉辦合作論證活動,讓學習者在本平台上探討社會上爭論已久的重大議題,透過各功能與鷹架的建置,引導使用者以合作、聚焦、友善的方式刺激成員針對「想法」進行意見交流。在活動結束後我們邀請使用者針對系統整體的知覺有用度、知覺易用度、使用意願與工具有用度等面向進行問卷調查,該活動共邀請41位高中學生來參與此活動並針對系統與其功能進行想法反饋。從研究結果顯示學生經歷合作論證活動後,學生對於合作論證平台的知覺有用度、知覺易用度、使用意願與工具有用度等面向皆為正向。並期望未來研究者能透過本次系統評估及學生給予之使用意見與回饋,在未來進一步的發展此系統。
To improve students’ collaborative argumentation ability, this study aims to develop an asynchronous collaborative argumentation system (ASCLAS). In ASCLAS, the sentence and behavior analyses feature with natural language processing (NLP) technology are used, so that the system can guide students to correctly discuss or warn wrong behavior, thereby promoting team awareness and improve the team's ability to solve problems. After completing the development of the ASCLAS, a total of 41 high school students were invited to participate in the system evolution, and this study also collected feedbacks about system and functions from them. During system evolution, the students were asked to use the ASCLAS for collaborative argumentation and then they were asked to complete the questionnaire survey focusing on the system's overall perceived usefulness, perceived ease of use, willingness to use and tool usefulness. The students expressed positive experiences on the perceived usefulness, perceived ease of use, willingness to use and tool usefulness. Directions for future research and system improvement were also discussed based on the students’ feedbacks.
Andriessen, J. (2006). Arguing to learn. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 443-460). New York: Cambridge University Press.
Asterhan, C. S. C., & Schwarz, B. B. (2009). Transformation of robust misconceptions through peer argumentation. In B. B. Schwarz, T. Dreyfus, & R. Hershkowitz (Eds.), Guided transformation of knowledge in classrooms (pp. 159-172). New York: NY: Routledge.
Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE transactions on neural networks, 5(2), 157-166.
Dawson, V. M., & Venville, G. (2010). Teaching Strategies for Developing Students' Argumentation Skills About Socioscientific Issues in High School Genetics. Research in Science Education, 40(2), 133-148.
Erduran, S., Simon, S., & Osborne, J. (2004). TAPping into argumentation: Developments in the application of Toulmin's Argument Pattern for studying science discourse. Science Education, 88(6), 915-933.
Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2), 179-211.
Fxsjy, jieba library, Available: https://github.com/fxsjy/jieba
Gers, F. A., Schmidhuber, J., & Cummins, F. (1999). Learning to forget: Continual prediction with LSTM.
Gao, F., Zhang, T., & Franklin, T. (2013). Designing asynchronous online discussion environments: Recent progress and possible future directions. British Journal of Educational Technology, 44(3), 469-483.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
Hara, N., Bonk, C. J., & Angeli, C. (2000). Content analysis of online discussion in an applied educational psychology course. Instructional Science, 28(2), 115-152.
Hew, K. F., Cheung, W. S., & Ng, C. S. L. (2009). Student contribution in asynchronous online discussion: a review of the research and empirical exploration. Instructional Science, 38(6), 571-606.
Hewitt, J. (2003). How Habitual Online Practices Affect the Development of Asynchronous Discussion Threads. Journal of Educational Computing Research, 28(1), 31-45.
Huang, C.-J., Chang, S.-C., Chen, H.-M., Tseng, J.-H., & Chien, S.-Y. (2016). A group intelligence-based asynchronous argumentation learning-assistance platform. Interactive Learning Environments, 24(7), 1408-1427.
Jiménez-Aleixandre, M. P. (2007). Designing Argumentation Learning Environments. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in Science Education: Perspectives from Classroom-Based Research (pp. 91-115). Dordrecht: Springer Netherlands.
Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882.
Mihalcea, R., & Tarau, P. (2004). Textrank: Bringing order into text. In Proceedings of the 2004 conference on empirical methods in natural language processing.
Mikolov, T., Karafiát, M., Burget, L., Černocký, J., & Khudanpur, S. (2010). Recurrent neural network based language model. In Eleventh annual conference of the international speech communication association.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems ,3111-3119.
Mihalcea, R., & Tarau, P. (2004). Textrank: Bringing order into text. In Proceedings of the 2004 conference on empirical methods in natural language processing.
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
Nussbaum, E. M., & Edwards, O. V. (2011). Critical Questions and Argument Stratagems: A Framework for Enhancing and Analyzing Students' Reasoning Practices. Journal of the Learning Sciences, 20(3), 443-488.
Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank citation ranking: Bringing order to the web. Stanford InfoLab.
Pascanu, R., Mikolov, T., & Bengio, Y. (2013, February). On the difficulty of training recurrent neural networks. In International conference on machine learning (pp. 1310-1318).
Rajaraman, A.; Ullman, J.D. (2011). "Data Mining" . Mining of Massive Datasets. pp. 1–17
Ramos, J. (2003, December). Using tf-idf to determine word relevance in document queries. In Proceedings of the first instructional conference on machine learning (Vol. 242, pp. 133-142).
Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257-286.
Sermanet, P., Chintala, S., & LeCun, Y. (2012). Convolutional neural networks applied to house numbers digit classification. arXiv preprint arXiv:1204.3968.