跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃錦峯
Jin-feng Huang
論文名稱: 以週期性雙稜鏡型晶疇極化反轉鈮酸鋰同時作為Nd:YVO4雷射之電光Q調制器和腔內光參量振盪器
Double-prism domain PPLN for simultaneous laser Q-switching and optical parametric oscillation in a Nd:YVO4 Laser
指導教授: 陳彥宏
Yen-Hung Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 80
中文關鍵詞: 週期性雙稜鏡型晶疇極化反轉鈮酸鋰Nd:YVO4雷射Q-調制光參量振盪器
外文關鍵詞: Double-prism domain PPLN, Nd:YVO4 laser, Q-switching, OPO
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,致力於把兩種功能的元件整合在同一塊晶體上。此兩種元件分別為電光光束偏折器元件及光參量產生器與光參量振盪器,在本實驗中已成功製作出雙稜鏡 (double-prism domain ,DPD)週期性晶格極化反轉鈮酸鋰晶體,更進一步,將此晶體置入Nd:YVO4雷射系統中,同時達成電光Q調制開關及光參量產生器與光參量振盪器。

    此雙稜鏡 (double-prism domain ,DPD)週期性晶格極化反轉鈮酸鋰晶體週期為30μm,可當作光束偏折器與光參量產生器使用,在光束偏折器方面,當施加電壓約為300V時可將光束偏折1度,而放入雷射共振腔後,藉由外加180V的強度、頻率為1k赫茲的脈衝電壓於晶體後達成電光Q調制開關,並在雷射二極體泵浦功率為7.5W時量測波長1550nm的光參量振盪器訊號光,可得到脈衝能量為8.14uJ、脈衝寬度為3.5ns (尖峰功率為2.3kW),且可達成光參量振盪器連續波長調變。


    In this thesis, we have devoted to integrate two device functions in a monolithic LiNbO3 crystal. These two devices are an EO beam deflector and an optical parametric generator (OPG) or optical parametric oscillator (OPO). The PPLN crystal has a double-prism domain (DPD) structure has been designed and fabricated in this work. We further inserted this DPD PPLN crystal in a Nd:YVO4 laser system to simultaneously function as a laser Q switch and an intracavity optical parametric generator (OPG) and optical parametric oscillator (OPO).

    The PPLN crystal has a double-prism domain (DPD) structure with a domain period of 30 m to simultaneously as an electro-optic (EO) beam deflector (and therefore an EO Q-switch in the laser cavity) and an optical parametric down converter. The characterized deflection angle of the DPD PPLN device was 1o at the voltage about 300V. And at 180V Q-switching voltage and 1-kHz switching rate, we measured a down-converted signal at 1550 nm with pulse energy of 8.14 J and pulse width of 3.5ns ( peak power of ~2.3 kW) from the constructed IOPO at 7.5W diode pump power. Continuous wavelength tuning of the IOPO signal was also demonstrated.

    目錄 第一章 緒論..........................1 1-1 非線性積體光學簡介.....................1 1-2 晶體介紹..........................3 1-3 研究動機..........................8 1-4 內容概要..........................13 第二章 理論.........................14 2-1 共振腔品質調製(cavity Q-switch) ...............14 2-2 鈮酸鋰晶體電光效應.....................20 2-3 非線性波長轉換.......................24 2-4 光參量產生器........................27 2-5 準相位匹配(Quasi-Phase-Matching,QPM).......... 31 2-6 電光效應用於光束偏折....................35 第三章 晶片設計與製作 ..................38 3-1 晶片設計..........................38 3-1.1 光參量震盪器週期設計................38 3-1.2 電光效應應用於光偏折設計..............39 3-2 週期性晶疇極化反轉製程(poling) ..... .........42 3-2.1 極化反轉機制過程(poling) .... .........42 3-2.2 極化反轉製程....................45 3-3 極化反轉結果及晶片加工...................49 3-3.1 極化反轉結果....................49 3-3.2 晶片加工......................49   第四章 實驗量測結果與討論............ ....52 4-1 偏折角度與效率量測.....................52 4-2 電光Q調制器和腔內光參量振盪器量測............ .56 第五章 結論與未來展望 5-1 結論............................61 5-2 未來展望..........................62 第六章 參考文獻 圖目錄 圖1-1 鈮酸鋰晶體順電相之結構示意圖................4 圖1-2 鈮酸鋰晶體鐵電相雙穩態之結構示意圖.............5 圖1-3 鈮酸鋰雙穩態位能示意圖...................5 圖 1-3.1 整合電光布拉格Q調制雷射與光參量產生器於單塊晶體,在Nd:YVO4 雷射系統達成波長可調雷射輸出之架構圖...........9 圖1-3.2 (a) 利用二維PPLN結構同時將電光布拉格Q調制器與光參量產生器整合 於單塊二維PPLN晶體上,在Nd:YVO4雷射系統達成波長可調雷射輸出之 架構圖。.........................9 (b)二維PPLN結構示意圖....................9 圖1-3.3 光參量振盪器輸出1550nm訊號光之脈衝半高寬和峰值功率與吸收泵浦 光功率之關係........................10 圖 1-3.4 吸收泵浦光功率在9.1W時單發脈衝之寬度及每發脈衝約5%的強度變動10 圖 1-3.5 布拉格繞射示意圖.....................11 圖1-3.6 二維週期性晶格極化反轉鈮酸鋰(2D PPLN)晶體繞射效率.....11 圖(1-3.7) 三角稜鏡結構實驗圖...................12 圖(1-3.8) 本實驗之結構與架構示意圖................13 圖2-1.1 Q 調制(Q-switch)機制示意圖................15 圖(2-2.1) 負單軸雙折射晶體折射率橢球分布示意圖.......... 20 圖(2-2.2) 外加z方向電場於不同極化方向之折射率橢球大小變化.....23 圖(2-2.3) 倍頻示意圖........................25 圖(2-2.4) 和頻示意圖........................25 圖(2-2.5) 差頻示意圖........................25 圖(2-2.6) 動量守恆式意圖......................26 圖(2-4.1) 光參量產生能量守恆示意圖.................27 圖(2-5.1) 週期性晶疇極化反轉結構示意圖...............31 圖(2-5.2) 準相位匹配示意圖.................... 32 圖(2-5.3) 一階準相位匹配與雙折射相位匹配之能量耦合示意圖......33 圖(2-6.1) 光偏折示意圖 折射率在x方向為線性變化n(x)=n+ax,光束通過後 會偏折一角度θ......................35 圖(2-6.2) 三角形晶格極化反轉示意圖.................36 圖(3-1.1) 雙稜鏡週期性晶格(double-prism domain (DPD)) 極化反轉鈮酸鋰結構....................38 圖(3-1.2) 晶格寬為200μm電壓對角度關係............ ..40 圖(3-1.3) 晶格寬為300μm電壓對角度關係............ . .40 圖(3-1.4) 晶格寬為400μm電壓對角度關係 ............ . 40 圖(3-2.1a) 成核點形成示意圖.................... 42 圖(3-2.1b) 尖端擴散示意圖..................... 43 圖(3-2.1c) 尖端終止示意圖..................... 43 圖(3-2.1d) 反轉區域合併示意圖...................44 圖(3-2.1e) 側向擴散示意圖.................... 44 圖(3-2.1f) 穩定示意圖.......................45 圖(3-2.2) 黃光微影製程流程示意圖.................46 圖(3-2.3) 高電場極化反轉架構示意圖.................47 圖(3-2.4) 極化反轉施加電壓波型圖及響應電流圖............48 圖(3-3.1) 極化反轉晶體正z面蝕刻結果................49 圖(4-1.1) 刀口法量測光束直徑架構示意圖............ ..50 圖(4-1.2) 折光效率與角度量測架構示意圖............ ..51 圖(4-1.3) 光束直徑(Beam size)分別為255μm 、300μm 、320μm 的偏折實際圖片,從0V開始,每60V取一張圖,到600V為止。 ..... ......52 圖(4-1.4) 不同光束進入晶體之光程示意圖...............53 圖(4-1.5) 不同光束直徑折光角度對電壓關係圖.............53 圖(4-1.6) (a)不同光束直徑隨電壓上升的穿透率 (b)直徑300μm的偏折效率與角度對電壓圖..........54圖(4-1.7) (a)不同光束直徑隨電壓上升的穿透率 (b)直徑300μm的偏折效率與角度對電壓圖..........55 圖(4-2.1) 雙稜鏡週期性晶格極化反轉鈮酸鋰同時作為Nd:YVO4雷射之電光Q調 制器和腔內光參量振盪器架構圖 .............56 圖(4-2.2) 吸收泵浦光能量在7.5W時之脈衝半高寬........... 57 圖(4-2.3) 不同吸收泵浦光源能量(Absorption pump power)時, 輸出尖峰功率(peak power)與脈衝寬度(Pulse width) 關係。......................... 58 圖(4-2.4) 溫度為40C下光參量振盪器共振後輸出之波長(1549.16nm) ...59 圖(4-2.5) 光參量產生器與光摻量振盪器訊號光比較.......... 59 圖(4-2.6) 固定吸收泵浦功率在7.5W條件下,OPO訊號光、閒置光波長與理論 值的比較圖。紅線部分為理論計算的結果,綠色點為訊號光(實驗量 測值),藍色點為閒置光(由訊號光實驗值所計算) .......60 圖(5-2.1) 利用銣鎂摻雜鈮酸鋰晶體同時達成雷射增益介質、電光布拉格Q調制 雷射和腔內光參量振盪器(OPO)於單一晶體上........ 62 圖(5-2.2) 串聯雙稜鏡週期性晶格與非週期性結構達成多波長光參量振盪器.63 圖(5-2.3) 非週期性雙稜鏡晶格結構達成多波長光參量振盪器...... 63 表目錄 表(1-1) 非尋常光折射率Sellmeier equation係數表...........6 表(1-2) 尋常光折射率Sellmeier equation係數表............ 7 表(3-1) 不同寬度在300V、140V對應的角度.............. 41 表(3-2) 晶格寬約為300μm,不同電壓下溫度對角度整理........ 41

    [1.1] Albert Einstein, “Zur Quantentheorie der Strahlung (On the Quantum
    Theory of Radiation) .”, Physika Zeitschrift, Vol. 18, 1917.
    [1.2] P.A.Franken,A.E.Hill,C.W.Peter,G.Weinreich,"Generation of Optical
    Harmonics.",Physical Review Letters,Vol.7,Number 4,1961.
    [1.3] M.Bass,P.A.Franken,A.E.Hill,C.W.Peter,G.Weinreich,"Optical
    Mixing.",Physical Review Letters,Vol.8,Number18,1962.
    [1.4] S. E. Miller, “Integrated Optics : an Introduction.”, Bell System
    Technical Journal, 48, 1969
    [1.6] W. H. Zachariasen, Skr. Norske Vid-Ada., Oslo, Mat. Naturv.,No.4, 1928
    [1.5] 孔勇發,許京軍,張光寅,劉思敏,陸猗,「多功能光電材料 – 鈮酸鋰晶體」,科學出版社,2005
    [1.7] A. A. Ballman, “Growth of Piezoelectric and Ferroelectric Materials by the
    Czochralski Technique.”, Journal of the American Ceramic Society,48,1965
    [1.8] P. Lerner, C. Legras and J. P. Duman, “Stoechiométrie des Monocristaux
    de Métaniobate de Lithium.”, Journal of Crystal Growth,3-4, 1968
    [1.9] Takumi Fujiwara et al Appl. Phys. Lett. Vol.61 No.7 1992
    [1.10] Y. Furukawa, K. Kitamura, S. Takekawa, “Stoichiometric Mg:LiNbO3 as
    an effective material for nonlinear optics,” Opt. Lett., 23, pp1892-1894(1998).
    [1.11] J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3” Appl. Phys. Lett., 41, p.607-608(1982).
    [1.12] Yen-Chieh Huang, “Principles of Nonlinear Optics Course Reader.”,
    Institute of Photonics Technologies / Department of Electrical Engineering, National Tsinghua University, Hsinchu, Taiwan, 2007
    [1.13] Dieter H. Jundt, “Temperature-dependent Sellmeier Equation for the Index of Refraction, ne, in Congruent Lithium Niobate.”,Optics Letters, Vol. 22, No. 20, 1997.
    [1.14] Gregory David Miller July, “Periodically Poled Lithium Niobate : Modeling, Fabrication, and Nonlinear-Optical Performance.”,Department of Electric Engineering, Stanford University, 1998.
    [1.15] A. Yariv and P. Yeh, “Optical waves in Crystals.”,Wiley, New York, 1983
    [1.16] Y.Y.Lin,S.TLin,G.W.Chang,A.C.Chiang,Y.C.Huang,Y.H.Che n,"Electro-optic periodically poled lithium niobate Bragg modulator as a laser Q-switch." ,OPTICS LETTERS,Vol.32,No.5,2007.
    [1.17] 10 December 2007 / Vol. 15, No. 25 / OPTICS EXPRESS 17096
    [1.18] 張錫雄,"以單塊二維週期性晶格極化反轉鈮酸鋰同時作為 Nd:YVO4 雷射之電光Q 調制器和腔內光參量振盪器 Monolithic 2D periodically poled lithium niobate (PPLN) as simultaneous an electro-optic Q switch and Optical parametric oscillator(OPO) in Nd:YVO4 laser.",國立中央大學光電科學與工程研究所碩士論文,中華民國九十九年一月。
    [1.19] J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, "Shape-Optimized Electrooptic Beam Scanners: Experiment" ,IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 11, NO. 1, JANUARY 1999
    [1.20] Yi Chiu,Jie Zou,Daniel D. Stancil,"Shape-Optimized Electrooptic Beam Scanners: Analysis, Design, and Simulation"JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 17, NO. 1, JANUARY 1999
    [1.21] Qibiao Chen, Yi Chiu, David N. Lambeth,and Daniel D. Stancil "Guided-Wave Electro-optic Beam Deflector Using Domain Reversal in LiTaO3",JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 12, NO. 8, AUGUST 19
    [2.1] Orazio Scelto,David C.Hanna,"Principle of Lasers",THIRD EDITION
    [2.2] A. Yariv and P. Yeh, “Optical waves in Crystals.”, Wiley, New York, 1983
    [2.3] Yen-Chieh Huang, “Principles of Nonlinear Optics Course Reader.”,
    Institute of Photonics Technologies / Department of Electrical Engineering, National Tsinghua University, Hsinchu, Taiwan, 2007
    [2.4] Y. R. Shen, “The Principles of Nonlinear Optics.”, Wiley, New York, 1984.
    [2.5] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan,“Interactions between light waves in a nonlinear dielectric.”,Physical Review, Vol. 127, 1962
    [2.6] A. Yariv and P. Yeh, “Optical waves in Crystals.”,Wiley, New York, 1983
    [3.1] I. Camlibel,"Spontaneous Polarization Measurements in Several Ferroelectric Oxides Using Pulsed-Field Method.",J. Appl. Phys.,vol. 40, pp. 1690-1693, 1969
    [3.2] L. E. Myers,* R. C. Eckardt, M. M. Fejer, and R. L. Byer “Quasi-phase-matched optical parametric oscillators in bulk periodically
    poled LiNbO3” J. Opt. Soc. Am. B/Vol. 12, No. 11/November 1995

    [3.3] L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer,
    W. R. Bosenberg, “Quasi-phase-matched 1.064-mm-pumped Optical
    Parametric Oscillator in Bulk Periodically Poled LiNbO3.”,
    Optics Letters, Vol. 20, No.1, 1995
    [3.4] L. Myer, R. Eckardt, M. Fejer, R. Byer, W. Bodenbeg, and J. Pierce,“Quasi-phase Matched Optical Parametric Oscillators in Bulk Periodically Poled LiNbO3.”,Journal of the Optical Society of America B, Vol. 12, No. 11, 1995
    [3.5] 張錫雄,"以單塊二維週期性晶格極化反轉鈮酸鋰同時作為 Nd:YVO4 雷射之電光Q 調制器和腔內光參量振盪器 Monolithic 2D periodically poled lithium niobate (PPLN) as simultaneous an electro-optic Q switch and Optical parametric oscillator(OPO) in Nd:YVO4 laser.",國立中央大學光電科學與工程研究所碩士論文,中華民國九十九年一月。
    [4.1] D.H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553-1555 (1999).

    QR CODE
    :::