跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林嘉興
Chia-Hsing Lin
論文名稱: 廣角監視器鏡頭設計與 相對照度之探討
指導教授: 孫文信
W-S Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學研究所碩士在職專班
Executive Master of Optics and Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 109
中文關鍵詞: 相對照度鏡頭成像立體角鏡片內部穿透率介面穿透率畸變
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文為五百萬畫素廣角監視器鏡頭設計,其鏡頭組成為7片玻璃鏡片與二片平板玻璃所組成,其中含有二片非球面鏡片。另初階設計為有效焦距 1.649 mm、F/# 2.1、最大半視角80度。
    廣角監視器鏡頭成像品質,MTF在180 lp/mm至少大於0.618,橫向色差小於0.623 um,F-theta distortion 小於0.85%,相對照度大於93%。
    本研究主要探討與分析相對照度,在半視角80之鏡頭設計,由於視角越大相對照度會越嚴重,所以,在本文中會詳述相對照度形成的原因並推導其公式,相對照度與鏡面之介面穿透率、鏡片內部穿透率與鏡頭成像立體角有關。


    This article is designed for a five-million-pixel wide-angle monitor lens. The lens consists of seven glass lenses and two flat glass plates, which contain two aspherical lenses. The other initial design is effective focal length 1.649 mm, F/# 2.1, maximum half angle of view 80 Wide-angle monitor lens imaging quality, MTF is at least greater than 0.618 at 180 lp/mm, lateral chromatic aberration is less than 0.623 um, F-theta distortion is less than 0.85%, and contrast is greater than 93%.
    This study mainly discusses the contrast with the analysis. In the lens design with half angle of view, the larger the angle of view, the more serious the contrast will be. Therefore, in this paper, the reason for the formation of the contrast is deduced and the formula is derived. The interface penetration rate and the internal transmittance of the lens are related to the solid angle of the lens image.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XII 第1章 緒論 1 1-1 前言 1 1-2 研究動機與目的 1 1-3 文獻回顧 2 1-4 論文架構 6 第2章 理論 7 2-1 玻璃折射率與波長關係 7 2-2 相對照度 8 2-2-1 介面穿透率 8 2-2-1-1 S偏振光 9 2-2-1-2 P偏振光 14 2-2-1-3 垂直入射 17 2-2-2 鏡片內部穿透率(ABS)定義與公式計算 17 2-2-3 立體角()定義 19 2-2-3-1 光展量簡化公式 19 2-2-3-2 圓形立體角 21 2-2-3-3 橢圓立體角 21 2-2-3-4 定義參考光線 22 2-2-3-5 光線方向向量與方向餘弦量 22 2-2-3-6 計算像方數值孔徑 22 2-2-3-7 投影立體角與正向立體角關係 24 2-2-4 相對照度公式 24 2-3 光暈(Vignetting)定義 25 2-3-1 光暈定義 25 2-3-2 光暈係數與鏡面有效半徑之關係 26 2-4 畸變 29 2-4-1 光學畸變 29 2-4-2 F-theta畸變 30 第三章 廣角監視鏡頭優化設計 31 3-1 感測器規格與設計目標 31 3-2 廣角鏡頭有效焦距的計算 32 3-3 設計起始值之選取 33 3-3-1 設計起始值之選取 33 3-3-2 設計起始值之MTF空間頻率與繞射極限值 34 3-3-3 由起始值鏡頭鏡片數目10片縮短為7片 34 3-4 Schott玻璃材料優化範圍設定 35 3-4-1 Code V General Constraint 設定 35 3-4-2 非球面鏡片材料選取 37 3-5 相對照度計算 38 3-5-1 在優化過程不考慮vignetting之設定 38 3-5-2 介面穿透率計算 40 3-5-2-1 0視場角(垂直入射)介面穿透率(REF0)計算 40 3-5-2-2 80半視場角(斜向入射)之介面穿透率(REF) 48 3-5-2-3 鏡頭每面介面穿透率與總穿透率(REF0)之Code V數值與公式比較 55 3-5-3 內部穿透率 57 3-5-3-1 光線垂直入射鏡頭第一片鏡片內部穿透率計算 59 3-5-3-2 垂直入射內部穿透率與總內部穿透率之Code V數值與公式比較 60 3-5-3-3 80視場角(斜向入射)鏡片內部穿透率(ABSd)公式與計算 61 3-5-3-4 光線半視角80入射鏡頭每一鏡片內部穿透率與內部總穿透率之Code V數值與公式比較 63 3-5-4 在不同半視角之介面穿透率、內部穿透率與總穿透率之Code V數值與公式比較 64 3-5-5 立體角公式與計算 66 3-5-5-1 0度半視角立體角公式與計算 66 3-5-5-2 80度半視角立體角公式與計算 69 3-5-5-3 半視角0度立體角與半視角80度立體角之Code V數值與公式比較 75 3-5-6 照度與相對照度計算 75 第四章 設計結果 76 4-1 資料與鏡片圖 76 4-2 成像品質分析 77 4-3 MTF vs Field 78 4-4 橫向色差 79 4-5 F-theta畸變 80 4-6 設計目標與設計結果比較表 81 第五章 結論與未來展望 81 附錄一 (不同玻璃之色散係數) 82 附錄二 (10MM之鏡片內部穿透率) 84 附錄三 (25MM之鏡片內部穿透率) 86 附錄四 (部分不含鉛非球面玻璃材料) 88 附錄五 (環境溫度22℃之橫向色差值) 88 參考資料 89

    [1] A. Ning, S. Marcos,, “Ultra-wide angle objective lens,” U.S. patent 7,929,221 B2 (Apr. 19, 2011).
    [2] A. Ning, S. Marcos,, “Compact fisheye objective lens,” U.S. patent 7,869,141 B2 (Jan. 11, 2011).
    [3] A. V. Arecchi, T. Messadi, R. J. Koshel , "Field Guide to Illumination," SPIE Press, Bellingham, WA (2007).
    [4] R. W. Wood, “Refraction of Light,” in Handbook of PhysicalOptics (Optical Society of America, Washington, DC, 1911).
    [5] R. Hill, “A Lens for Whole Sky Photography,” in Proceedings of the Optical Convention , (London, 1926) , pp.878-883.
    [6] J. Y. Zheng and S. G. Li, “Employing a fish-eye for scene tunnel Scanning,” in Asian Conference on Computer Vision,( Hyderabad, 2006), pp. 509.
    [7] W. Feng, B. Zhang, J. Röning, Z. Cao, X. Zong, “An Embedded Omnidirectional Vision Navigator for Automatic Guided Vehicles,” Proc. SPIE 7878 (2011).
    [8] Z. Huang, J. Bai and X. Hou, “A multi-spectrum fish-eye lens for rice canopy detecting,” Proc. SPIE 7849, 78491Z (2010).
    [9] M. P. Rimmer. "Relative illumination calculations," Proc 2. SPIE 655. 99- 104 (1986).
    [10] M. Reiss, "Notes on the Cos4 Law of Illumination." Journal of Optical Socicty of America. Vol. 38, N. 11, pp. 980-986 (1948)
    [11] I. C. Gardner, "Validity of the Cosinc-Fourth-Power Law of Illumination," Journal of esearch of the National Bureau of Standards, Vol. 39. pp. 213-219 (1947)
    [12] Dmitry Reshidko. Jose Sasian. "The role of aberations in the relative illumination of a lens system," Proc. SPIE 9948 (2016).
    [13] Ronian Siew, "Rclative illumination and image distortion," Opt. Eng. 56(4), 049701 (2017).
    [14] Andrew W. ISHAK," High performance selective light wavelength filtering providing improved contrast sensitivity" , U. S. Patent US8360674 (2013).
    [15] W. S. Sun, C. L. Tien , "Ultra-wide angle lens design with relative illumination analysis," J. Eur. Opt. Soc.-Rapid 11, 16001 (2016).
    [16] 高鳳遙,「超大廣角鏡頭在溫度-20℃至60℃對熱的分析與校正之鏡頭設計」,國立中央大學光電所,碩士論文,民國一零五年
    [17] 徐英舜,「汽車超大廣角於溫度-30℃至70℃消熱差與高相對照度之鏡頭設計」,國立中央大學光電所,碩士論文,民國一零六年
    [18] I. Abe. H. Yoshida, and N. Moniwa, "Wide-angle lens and imaging apparatus using the same." U. S. Patent 0169912 (2011).
    [19] K.H Kim. Y.S Kim and S.C Park. "Design of a Tele-centric Wide Field Lens with High Relative Illumination and Low Distortion Using Third-order Aberration Analysis" , Journal of the Optical Socicty of Korea Vol. 19. No. 6, December 2015, pp. 679-686 (2015)
    [20] Schott, “TIE-29: Refractive index and dispersion,” in Proc. Schott Technical information (Schott Inc., Germany, 2016).
    [21] 李正中,薄膜光學與鍍膜技術,藝軒圖書出版社,第六版。
    [22] D. K. Cheng, Field And Electromagnetics (second edition, A Ddison-Wesley, London, 1989).
    [23] G. R. Fowles, Introduction to Modern Optics, (2nded., holt Rineheartand Winston Inc., 1975).
    [24] Schott, “TIE-35: Transmittance of optical glass,” in Proc. Schott Technical information (Schott Inc., Germany, 2005).
    [25] Schott, “Optical Glass,” in Proc. Schott Technical information (Schott Inc., Germany, 2018).
    [26] Virendra N. Mahajan, Optical Imaging and Aberrations, Part I – Ray Geometrical Optics, P104~106, SPIE PRESS , Bellingham, 1998
    [27] 許修真,「以LED為光源的反射式液晶投影照明系統之設計與分析」,元智大學電機工程研究所,碩士論文,民國93年7月。
    [28] Synopsys, Code V Electronic Document Library, Version 11.0, Lens System Setup for Reference Manuals, Chap.1(2012)D
    Synopsys, Lens System Setup Reference Manual, Version 11.0, Lens System Setup for Reference Manuals, Chap.1, Entering System Data: Specifying Vignetting. (2012).

    QR CODE
    :::