| 研究生: |
劉恆瑞 Heng-Rui Liu |
|---|---|
| 論文名稱: |
應用於FMCW雷達偵測器之高階統計和小波估計降雜訊研究 Novel Denoising Techniques Assisted from Higher-Order Statistics and Wavelet Estimation in FMCW Radar Detector |
| 指導教授: |
林嘉慶
Jia-Chin Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 調頻連續波 、啁啾訊號波形 、連續小波轉換 、高階統計 、降雜訊 |
| 外文關鍵詞: | FMCW, Chirp, Continuous Wavelet Transform(CWT), Higher Order Statistics(HOS), Denoising |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
調頻連續波雷達FMCW (Frequency Modulated Continuous Wave Radar)已廣泛的被運用在汽車雷達系統中,由於其訊號相互之間的干擾會使得無法有效的偵測出真實目標,因此對於目標物的偵測是很重要的。而在雷達訊號偵測中,由於各種干擾強度是隨機產生的,如果使用傳統的設計採用固定誤警率CFAR(Constant False-Alarm Rate)算法進行偵測,在這種情況下固定臨界值的方式難以保證其偵測效能,會受到多目標物的環境與雜波(clutter)的影響。
因此本論文研究將使用到高階統計(Higher-Order Statistics)的特性,以及使用改善的小波估計(Wavelet Estimation),把蒐集到的包含真實訊號與雜訊訊號的數據透過連續小波轉換進行降雜訊來調整小波臨界值,找到合適的訊號屬性參數,將雜訊從訊號中分離出來,過過模擬去解決多點雜訊能量問題,達到能夠有效的分辨出偵測目標與降雜訊的效果。
The Frequency Modulated Continuous Wave (FMCW) Radar has been widely used in automotive radar systems, since the interference between their signals will make it impossible to effectively detection the real target, it is very important to detect the target. In radar signal detection, since various interference intensity are randomly generated, if the traditional design uses the CFAR algorithm for detection, in this case, the method of constant threshold value is difficult to ensure its detection performance, and it will be affected by the environment and clutter of multi-target objects.
In this theis, we use the characteristics of HOS and the use of improved wavelet estimation to reduce the noise of the collected data including real signal and noise signal through continuous wavelet transform to adjust the wavelet threshold, find the appropriate signal attribute parameters, separate the noise from the signal, and solve the problem of multi-point noise energy through simulation, so as to effectively distinguish the detection target and denoise .
[1] A. Maio, F. Gini, and L. Patton, Waveform Design and Diversity for Advanced Radar Systems, 1st ed., IET Radar and Sonar Navigation, 2011.
[2] F. Folster, H. Rohling, and H. Lubbert, “An automotive radar systems and network based on 77GHz FMCW sensors”, in Proc. of IEEE Int. Radar Conf., 2005, pp. 871–876.
[3] H. Rohling and E. Lissel, “77 GHz Radar Sensor for Car Application,” Proceedings of the International Radar Conference, pp.373-379, May. 1995.
[4] D.D. Li, S.C. Luo, C. Pero, X. Wu, and R.M. Knox, “Millimeter-wave FMCW/monopulse radar front-end for automotive applications,” IEEE MTT-S International Microwave Symposium Digest., pp.277-280, June. 1999.
[5] A. G. Stove, “Linear FMCW radar techniques,” IEE Proc. F, vol. 139, no. 5, pp. 343-350, Oct. 1992.
[6] H. Rohling, “Radar CFAR thresholding in clutter and multiple target situations,” IEEE Trans. Aerosp. Electron. Syst., vol. AES–19, no. 4, pp. 608–621, 1983.
[7] Yusuke Kitsukawa, Masashi Mitsumoto, Hiroyuki Mizutani, Noriyuki Fukui and Chiharu Miyazaki Mitsubishi Electric Corporation, “An Interference Suppression Method by Transmission Chirp Waveform with Random Repetition Interval in Fast-Chirp FMCW Radar”, Oct 2019.
[8] Dipl.-Ing. (FH) Christian Wolff, Frequency Modulated Continuous Wave Radar,2018.
[9] Mostafa Alizadeh, FMCW Radar System, Jul , 2019.
[10] Patrick Flandrin “Time-frequency and chirps”, Ecole Normale Sup'erieure de Lyon, Laboratoire de Physique (Umr 5672 Cnrs),46 all'ee d'Italie, 69364 Lyon Cedex 07, France.
[11] Ivo Bizon Franco de Almeida, Marwa Chafii , Ahmad Nimr and Gerhard Fettweis, “Alternative Chirp Spread Spectrum Techniques for LPWANs”,Jun.2021.
[12] Ana Belen Martinez, Atul Kumar, Marwa Chafii, Gerhard Fettweis, “A Chirp-Based Frequency Synchronization Approach for Flat Fading Channels”,Apr.2021.
[13] G. M Hatem , J. W Abdul Sadah , T. R. Saeedc G. M Hatema , J. W Abdul Sadahb , T. R. Saeed, “Comparative Study of Various CFAR Algorithms for NonHomogenous Environments”, IOP Conf. Ser.: Mater. Sci. Eng. 433 012080, 2018.
[14] Saeed, T.; Hatem, G.; Abdul Sadah, J.; Ziboon, H. “Design and Implementation of a New CFAR Based on Weighted and Statistical Algorithms”. Preprints 2020, 2020030397 (doi: 10.20944/preprints202003.0397.v1).
[15] P. P. Gandhi and S. A. Kassam, "Analysis of CFAR processors in nonhomogeneous background," in IEEE Transactions on Aerospace and Electronic Systems, vol. 24, no. 4, pp. 427-445, July. 1988, doi: 10.1109/7.7185.
[16] Rajan Srinivasan, “Importance Sampling Applications in Communications and Detection”, Springer-Verlag Berlin Heidelberg 2002.
[17] M. A. Richards, J. A. Scheer, and W. A. Holm, “Principles of Modern Radar”, 1st ed. SciTech Publishing, 2010.
[18] M. A. Richards, “Fundamentals of Radar Signal Processing”, 2nd ed.McGraw-Hill, 2014.
[19] A. Jalil, H. Yousaf and M. I. Baig, "Analysis of CFAR techniques," 2016 13th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, 2016, pp. 654-659.
[20] Zhen Jia, “Multi-target CFAR Detection of a Digital Phased Array Radar System”, 2019 J. Phys.: Conf. Ser. 1314 012011.
[21] Jen J, 2011 A study of CFAR Implementation Cost and Performance Tradeoffs in Heterogeneous Environments, Thesis, California State Polytechnic University, Pomona.
[22] Vincent Y Li F and Miller K 2009 Target Detection in Radar: Current Status and Future Possibilities the Journal of Navigation 50 pp 303-313.
[23] Moder Safir Shabit et al 2012 CFAR Detectors Employed by Radar Sensor Systems 12th International Conference on Control, Automation and Systems.
[24] Dejan Ivkovic, Milenko Andrić, B.M. Zrnic “Detection of Very Close Targets by Fusion CFAR Detectors “January 2016,Scientific Technical Review 66(3):50-57.
[25] Lei Zhao, Wexian Liu, Xin Wu and Jeffrey S Fu, “A Novel Approach for CFAR Processor Design”, 2001 IEEE Radar Conference, pp. 284-288.
[26] César Torres-Huitzil, Rene Cumplido-Parra, Santos López-Estrada, “Design and Implementation of a CFAR Processor for Target Detection”, Computer Science Department, INAOE, Apdo. Postal 51 & 216 Tonantzintla, Puebla, México,2004.
[27] A. Melebari, A. Melebari, W. Alomar, M. Y. A. Gaffar, R. De Wind and J. Cilliers, "The effect of windowing on the performance of the CA-CFAR and OS-CFAR algorithms," 2015 IEEE Radar Conference, Johannesburg, 2015, pp. 249-254.
[28] Hansen, V.G and Sawyers, J 1980 Delectability Loss Due to 'Greatest Of Selection in a CellAveraging CFAR IEEE Transactions on Aerospace and Electronic Systems 16 pp 115-118.
[29] M. Sahal, Z. A. Said, R. Y. Putra, R. E. Abdul Kadir and A. A. Firmansyah, "Comparison of CFAR Methods on Multiple Targets in Sea Clutter Using SPX-Radar-Simulator," 2020 International Seminar on Intelligent Technology and Its Applications (ISITIA), 2020, pp. 260-265, doi: 10.1109/ISITIA49792.2020.9163697.
[30] Herrera, R. H., J. B. Tary, M. van der Baan, and D. W. Eaton, 2015,Body wave separation in the time-frequency domain: IEEE Geoscience and Remote Sensing Letters, 12, 364–368, doi: 10.1109/LGRS.2014.2342033.
[31] Gabor, D., 1946, Theory of communication. Part 1: The analysis of information:
Journal of the Institution of Electrical Engineers — Part III: Radio and Communication Engineering, 93, 429–441, doi: 10.1049/ji-3-2.1946.0074.
[32] I. Daubechies, J. Lu, and H.-T. Wu, “Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool,” Appl. Comput.Harmon. Anal., vol. 30, no. 2, pp. 243–261, Mar. 2011.
[33] I. Daubechies, Ten Lectures on Wavelets. Philadelphia, PA, USA: SIAM, 1992, ser. CBMS-NSF Regional Conference Series in Applied Mathematics.
[34] S. Mostafa Mousavi and Charles A. Langston, Hybrid Seismic Denoising Using Higher-Order Statistics and Improved Wavelet Block Thresholding. Bulletin of the Seismological Society of America, Vol. 106, No. 4, pp. 1380–1393, August. 2016, doi: 10.1785/0120150345.
[35] S. Mostafa Mousavi and Charles A. Langston, Automatic noise-removal/signal-removal based on general cross-validation thresholding in synchrosqueezed domain and its application on earthquake data, March 2017Geophysics 82(4):1-58,
DOI:10.1190/geo2016-0433.1.
[36] DeCarlo, L. T. (1997). On the meaning and use of kurtosis, Psychol. Meth. 2,
292–307.
[37] Tsolis, G., and T. Xenos (2011). Signal denoising using empirical mode
decomposition and higher order statistics, Int. J. Signal Process. Image Process. Pattern Recogn. 4, 91–106.
[38] G. Thakur, E. Brevdo, N. S. Fuckar, and H.-T. Wu, “The synchrosqueezing algorithm for time-varying spectral analysis: Robustness properties and new paleoclimate applications,” Signal Process., vol. 93, no. 5, pp. 1079–1094, May. 2013.
[39] D. L. Donoho, "De-noising by soft-thresholding," in IEEE Transactions on Information Theory, vol. 41, no. 3, pp. 613-627, May 1995, doi: 10.1109/18.382009.