| 研究生: |
許琮明 Tsung-Ming Hsu |
|---|---|
| 論文名稱: |
指數壽命分佈串聯系統之隱蔽區間資料加速壽命試驗之可靠度分析 Accelerated Life Tests of a Series System with Masked Interval Data Under Exponential Lifetime Distributions |
| 指導教授: |
樊采虹
Tsai-Hung Fan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 隱蔽資料 、指數分佈 、階段加速試驗 、馬可夫鍊蒙地卡羅方法 、期望值-最大化演算法 、有母數拔靴法 |
| 外文關鍵詞: | EM algorithm, parametric bootstrap method, Markov chain Monte Carlo method, masked data, exponential distribution, Step-stress accelerated life testing |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在串聯系統中,當任一物件失效即導致系統失效,但有時某些導致系統失效之物件無從觀測,且只知系統失效時間在某段時間內,而非確切失效的時間,亦即資料為群集隱蔽資料。本文討論在群集隱蔽資料中串聯物件的壽命服從指數分佈,各物件壽命與應力間具對數線性關係及在各階段應力下物件壽命之分配服從累積曝露模型時之階段加速試驗。我們分別以期望值-最大化演算法求得模型中參數之最大概似估計和以母數拔靴法估計其標準誤;以及在主觀先驗分佈下由馬可夫鍊蒙地卡羅方法得貝氏估計,同時比較兩種方法在正常應力條件下,物件與系統之平均壽命及可靠度函數之統計推論。模擬結果顯示,當樣本不是太大時,貝氏分析所得結果似乎優於最大概似方法。
In this thesis, we consider a system of independent and non-identical components connected in series, each component having a Exponential life time distribution under Type-I group censored. In a series system, the system fails if any of the components fails, and it may only be ascertained that the cause of system failure is due to one of the components in some subset of system components, so called masked data. We discuss the step-stress accelerated life testing in which the mean life time of each component is a log-linear function of the levels of the stress variables. The maximum likelihood estimates via EM algorithm is developed for the model parameters with the aid of parametric bootstrap method to estimate the resulting standard errors when the data are masked. Subjective Bayesian inference incorporated with the Markov chain Monte Carlo method is also addressed. Simulation study shows that the Bayesian analysis provides better results than the likelihood approach not only in parameters estimation but also in reliability inference under normal condition for both the system and components.
[1] Bagdonavicius, V. and Nikulin, M. S. (2002). Accelerated Life Models: Modeling and Statistical
Analysis, Chapman & Hall, Boca Raton.
[2] Bai, D. S., Kim, M. S., and Lee, S. H. (1989). Optimum simple step-stress accelerated life
tests with censoring. IEEE Trans. Reliab., 38, 528–532.
[3] Balakrishnan, N. and Aggarwala, R. (2000). Progressive Censoring: Theory, Methods, and
Applications, Birkhauser, Boston.
[4] Basu, S., Basu, A. P., and Mukhopadhyay, C. (1999). Bayesian analysis for masked system
failure data using nonidentical weibull models. J. Statist. Plann. Inference, 78, 255–275.
[5] Basu, S., Sen, A., and Banerjee, M. (2003). Bayesian analysis of competing risks with partially
masked cause of failure. Appl. Statist., 52, 77–93.
[6] Berger, J. O. and Sun, D. (1993). Bayesian analysis for the Poly-Weibull distribution. J. Amer.
Statist. Assoc., 88, 1412–1418.
[7] Cohen, A. C. (1963). Progressively censored samples in life testing. Technometries, 5, 327–329.
[8] Efron, B. (1979). Bootstrap method:another look at the jacknife. Annals of Statist., 17, 1–26.
[9] Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Trans. Pattern Anal. Mach. Intel., 6, 721–741.
[10] Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their applications.
Biometrika, 57, 97–109.
[11] Lin, D. K. J., Usher, J. S., and Guess, F. M. (1996). Bayes estimation of component-reliability
from masked system-life data. IEEE Trans. Reliab., 45, 233–237.
[12] Meeker, W. Q. and Escobar, L. A. (1998). Statistical Methods for Reliability Data, Wiley,
NewYork.
[13] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953).
Equations of state calculations by fast computing machines. J. of Chemical Physics, 21, 1087–
1092.
[14] Miller, R. and Nelson, W. (1983). Optimum simple step stress plans for accelerated life testing.
IEEE Trans. Reliab., 32, 59–65.
[15] Miyakawa, M. (1984). Analysis of incomplete data in competing risks model. IEEE Trans.
Reliab., 33, 293–296.
[16] Mukhopadhyay, C. and Basu, A. P. Bayesian analysis of competing risks: k independent
exponentials. Technical report No.516, Department of Statistics, The Ohio State University.
[17] Mukhopadhyay, C. and Basu, A. P. (1997). Bayesian analysis of incomplete time and cause of
failure data. J. Statist. Plann. Inference, 59, 79–100.
[18] Nelson, W. (1980). Accelerated life testing - step-stress models and data analysis. IEEE Trans.
Reliab., 29, 103–108.
[19] Nelson, W. (1990). Accelerated Testing: Statistical Models, Test Plans, and Data Analyses,
John Wiley Sons, New York.
[20] Reiser, B., Guttman, I., Lin, D. K. J., Usher, J. S., and Guess, F. M. (1995). Bayesian inference
for masked system lifetime data. Appl. Statist., 44, 79–90.
[21] Sarhan, A. M. (2001). Reliability estimation of components from masked system life data.
Reliability Engineering and System Safety, 74, 107–113.
[22] Sarhan, A. M. (2003). Estimation of system components reliabilities using masked data. Applied
Mathematics and Computation, 136, 79–92.
[23] Usher, J. S. (1996). Weibull component reliability prediction in the presence of masked data.
IEEE Trans. Reliab., 45, 223–229.
[24] Usher, J. S. and Hodgson, T. J. (1988). Maximum likelihood analysis of component reliability
using masked system life-test data. IEEE Trans. Reliab., 37, 550–555.
[25] Wu, S. J., Lin, Y. P., and Chen, Y. J. (2006). Planning step-stress life test with progressively
type I group-censored exponential data. Neerlandica, 60, 46–56.
[26] Zhao, W. and Elsayed, E. A. (2005). A general accelerated life model for step-stress testing.
IIE Trans., 37, 1059–1069.