| 研究生: |
段儀 Yi Duann |
|---|---|
| 論文名稱: |
自地面觀測氣輝反演氧原子離子光化學模型 Photochemical model for atomic oxygen ion retrieval from ground-based observations of airglow |
| 指導教授: |
張起維
Loren C. Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 太空科學研究所 Graduate Institute of Space Science |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 177 |
| 中文關鍵詞: | 大氣輝光 、氧原子離子 、光化學模型 |
| 外文關鍵詞: | Airglow, Atomic Oxygen Ion, Photochemical Model |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
欲了解中高層大氣之結構與運動模式,我們可以自離子的光化學反應著手進行探討。分布於中高層大氣F層的氧原子離子於能階躍遷的過程中,釋放出的可見光波段為630.0奈米,我們利用團隊共同架設之光度計(Photometer)系統,於夜晚的鹿林山天文台(23.46°N, 120.87°E)觀測台灣上空之氣輝,每10分鐘自光子計數器取一筆平均數據,以及俄羅斯伊爾庫茨克(51.8°N, 103.1°E)日地物理研究所之2016全年夜間氣輝地面觀測資料。並參考Link和Cogger. (1988)、Sobral et al. (1993),以及Vladislav et al. (2008) 的現有理論,建立光化學模型進行反演,可得氧原子濃度隨高度與時間的改變,並且與福衛三號之衛星觀測資料進行比對,以此方法進行長期觀測後,了解全年變化模式。於本篇論文中,吾人採用由Solomon (2017) 所開發之氣輝模型GLOW第0.98版,產生以瑞利為單位的氣輝亮度,結合GLOW本身使用的IRI-90背景參數,來驗證此三個模型的逆向推導效果。
本團隊所演算之氧原子離子密度變化及趨勢,與福衛三號電子密度觀測結果、地面站觀測之氣輝輻射率,以及GLOW模型輸入之變數進行比較,其中異同均於本文中被討論。本團隊研發之逆推模型所解析的氧原子離子變化趨勢,在不遠的未來可望被使用於更廣泛的電離層組成變化分析。
To study the chemistry and composition of the upper atmosphere, we can utilize airglow emissions from the photochemical reactions of the ions in this region. When the atomic oxygen ions distributed in the ionospheric F region experience an energy level transition, visible light with a wavelength of 630.0 nm is released. We used the photometer system built by our team at NCU to perform ground-based observations of airglow over the sky of Taiwan at Lulin Observatory (23.46°N, 120.87°E) during selected night times. Ground-based airglow spectrometer observations throughout 2016 from the Institute of Solar-Terrestrial Physics (ISTP) in Irkutsk, Russia (51.8°N, 103.1°E) are also utilized. [22] We combined the mean values of our observations every 10 minutes with photochemical models based on the formulas derived from the theories of Link and Cogger (1988), Sobral et al. (1993), and Vladislav et al. (2008). With these different methods, we can estimate how the density of oxygen atomic ions varies with time and altitude and compare the results from empirical models with satellite-based observation data from FORMOSAT-3/COSMIC. The airglow brightness values simulated (Unit: volume emission rate) by the empirical GLOW model v0.98 by Solomon (2017) are also applied to validate the effectiveness of the three inversion models used in this research.
The tendency and variation of the atomic oxygen ion density calculated by our photochemical models is compared to the ground-based time variation of airglow radiance, electron density observations of FORMOSAT-3/COSMIC, and input variables from GLOW. Similarities and differences are discussed. The pattern of atomic oxygen ion variation resolved by our inversion model will be utilized for further analysis of ionospheric composition variation in the future.
[1] Seargent, D. A. (2012). Weird weather: Tales of astronomical and atmospheric anomalies (1 ed.). New York: Springer-Verlag. doi:10.1007/978-1-4614-3070-4
[2] Russian Camera Lenses TOP35MM, MC MTO 11 (CA) 10/1000 mirror meniscus russian lens for Nikon. http://top35mm.com/MC-MTO-11-(CA)-10-1000-mirror-meniscus-russian-lens-for-Nikon
[3] Adachi, T., M. Yamaoka, M. Yamamoto, Y. Otsuka, H. Liu, C.‐C. Hsiao, A. B. Chen, and R.‐R. Hsu (2010). Midnight latitude‐altitude distribution of 630 nm airglow in the Asian sector measured with FORMOSAT‐2/ISUAL, J. Geophys. Res., 115, A09315, doi:10.1029/2009JA015147.
[4] Chang, L. C., C.-H. Lin, J. Yue, J.-Y. Liu, and J.-T. Lin (2013). Stationary planetary wave and nonmigrating tidal signatures in ionospheric wave 3 and wave 4 variations in 2007–2011 FORMOSAT-3/COSMIC observations, J. Geophys. Res. Space Physics, 118, doi:10.1002/jgra.50583.
[5] Beletsky, A. B., N.M. Grudinin, Yu.S. Karavaev, N.V. Kostyleva, V.A. Lukin, A.V. Mikhalev, M.A (2003). Chernigovskaya Optical observation results of mid-latitude auroras (MA) in the ISTP SB RAS Geophysical Observatory in the Eastern-Siberia south region (520N, 1030 E) during strong geomagnetic storms in October 29–31and November 20–21.
[6] Labitzke, K., J. J. Barnett, and B. Edwards (eds.) (1985). Handbook MAP 16, SCOSTEP, University of Illinois, Urbana.
[7] Hedin, A. E. (1991). Extension of the MSIS Thermospheric Model into the Middle and Lower Atmosphere, J. Geophys. Res. 96, 1159.
[8] Bilitza, D., D. Altadill, Y. Zhang, C. Mertens, V. Truhlik, P. Richards, L.-A. McKinnell, and B. Reinisch (2014). The International Reference Ionosphere 2012 - a model of international collaboration, J. Space Weather Space Clim., 4, A07, 1-12, doi:10.1051/swsc/2014004.
[9] Stanley, C. S. (2017). Global Modeling of Thermospheric Airglow in the Far-Ultraviolet, J. Geophys. Res., Space Physics, 122, doi:1002/2017JA024314.
[10] Rajesh, P. K., J Y Liu, C H Lin, A B Chen, R R Hsu & H T Su. (2012). “Airglow observation over equatorial and low-latitudes in the extreme solar minimum of 2007-2008”. Indian Journal of Radio & Space Physics. Vol 41, April 2012, pp. 148-154.
[11] Khomich, V. Y., A. I. Semenov, N. N. Shefov (2008). Airglow as an Indicator of Upper Atmospheric Structure and Dynamics. Springer-Verlag Berlin Heidelberg. ISBN: 978-3-540-75832-7.
[12] Link, R., L. L. Cogger (1988). A reexamination of the OI 6300 °A nightglow. J Geophys Res 93A:9883–9892
[13] Link, R., L. L. Cogger (1989). Correction to “A reexamination of the OI 6300 °A nightglow” by R. Link and L.L. Cogger. J Geophys Res 94A:1556
[14] Sanjay, K., E. L. Tan, S. G. Razul, S. S. Chong Meng and D. Siingh (2014). Validation of the IRI-2012 model with GPS-based ground observation over a low-latitude Singapore station. Earth, Planets and Space, 66:17.
[15] Sakai, J., K. Hosokawa, S. Taguchi, and Y. Ogawa (2014). Storm time enhancements of 630.0 nm airglow associated with polar cap patches, J. Geophys. Res. Space Physics, 119, 2214–2228, doi:10.1002/2013JA019197.
[16] J. E. van Zyl (1996). Unveiling the Universe: An Introduction to Astronomy. Springer-Verlag London. ISBN: 978-1-4471-1037-8. DOI: 10.1007/978-1-4471-1037-8.
[17] Church, D. A. (1993). Collision measurements and excited-level lifetime measurements on ions stored in Paul, Penning and Kingdon ion traps. Physics Reports, Volume 228, Issue 5-6, p. 253-358, doi: 10.1016/0370-1573(93)90030-H.
[18] Fong, C. J., W.T. Shiau, C. T. Lin, T. C. Kuo, C. H. Chu, S. K. Yang, Nick L. Yen, S. S. Chen, Y. H. Kuo, Y. A. Liou, and S. Chi (2008). Constellation Deployment for the FORMOSAT-3/COSMIC Mission. IEEE Transactions on Geoscience and Remote Sensing, VOL. 46, NO. 11, doi: 10.1109/TGRS.2008.2005202.
[19] Krasovskij, V. I. & Šefov, N. N. (1964). Airglow. Space Science Reviews, Volume 4, Issue 2, pp.176-198, 1965SSRv....4..176K.
[20] Garanin, S. G., L. I. Zykov, A. N. Klimov, S. M. Kulikov, S. P. Smyshlyaev, V. V. Stepanov, and A. Yu. Syundyukov (2017). Daily observation of weak (7m–8m) stars brightness with plain terrain.Optical Journal, No.12.
[21] Mikhalev, A. V., V. V. Khakhinov, A. B. Beletskii, and V. P. Lebedev (2016). Optical Effects of the Operation of the Onboard Engine of the Progress M-17M Spacecraft at Thermospheric Heights. Cosmic Research, 54:105–110. doi: 10.1134/S0010952516020039.
[22] Federal State Budgetary Institute of Science Institute of Solar-Terrestrial Physics, Siberian Branch of the Russian Academy of Sciences, 664033, Irkutsk, ul. Lermontova 126A.The equipment of Center for Common Use — Angara (Founded in 2003), 2016. http://ckp-angara.iszf.irk.ru/html/history.html
[23] Karen C. Fox (2011). Solar Cycle Primer, NASA’s Goddard Space Flight Center, Greenbelt, Md. Image Credit: NASA/MSFC.
[24] A. E. Hedin, J. E. Salah, J. V. Evans, C. A. Reber, G. P. Newton, N. W. Spencer, D. C. Kayser, D. Alcayde, P. Bauer, L. Cogger, and J. P. McClure (1977). A global thermospheric model based on mass spectrometer and incoherent scatter data, J. Geophys. Res., 82, 2139-2156.
[25] Chang, L.C., C.-H. Lin, J.-Y. Liu, B. Nanan, J. Yue, and J.-T. Lin (2013), Seasonal and Local Time Variation of Ionospheric Migrating Tides in 2007-2011 FORMOSAT-3/COSMIC and TIE-GCM Total Electron Content, J. Geophys. Res. Space Physics, 118, doi:10.1002/jgra.50268.