| 研究生: |
蕭立仁 Li-Ren Hsiao |
|---|---|
| 論文名稱: |
多孔金集電層應用於微型固態超級電容器 All-solid-state micro-supercapacitors with nanoporous-gold current collector |
| 指導教授: |
李勝偉
Sheng-Wei Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 超級電容器 、可撓超電容 、擬電容 、多孔金 、電化學 、儲能元件 |
| 外文關鍵詞: | Supercapacitor, Flexible supercapacitor, Pseudocapacitor, Nanoporous-gold, Electrochemistry, Energy storage device |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技發展,攜帶式與穿戴式之電子設備大量生產,舉凡行動裝置與穿戴式活動感應器等設備皆對人類生活習慣帶來巨大影響。然而,能源的消耗隨之增加,電化學儲能裝置的需求也日益增加。其中,可撓性固態微型超級電容器不僅擁有傳統超電容優異的功率密度與儲電能力,更可輕薄化裝置用於有限的空間。
在此研究中,我們使用聚亞醯胺(Polyimide,PI)作為可撓基材,將蒸鍍製程之金銀膜層結構進行合金化與去合金化製程,得到多孔金(Nanoporous-gold,NPG)結構,作為電流收集層。再以濺鍍製程將氧化鉬作為活性物質,進而製備出指叉式微型超電容。製備完成之元件在0.01 mA/cm2 電流密度下,可達到之最高體積比電容值為88.24 F/cm3。經過10000圈穩定度測試之重複充放電後,比電容值維持率為83.54 %,代表試片具有一定的穩定度可多次充放電使用。同時也進行可撓性質之相關測試。在不同彎曲曲率下,進行循環伏安的測試。由測試結果可知,因元件之循環伏安曲線在不同曲率的彎曲下,並未發現有明顯的變化,故元件擁有好的可撓性質。
活性材料的高導電性對於金屬氧化物的擬電容實現高的比電容以及功率和能量密度至關重要。基於金銀膜層電極具備一定之性能,本研究將多孔金電極鍍一層銀薄膜,希望藉此提升效能,結果表示多孔金電極鍍銀能使比電容由78.89提升至88.24 F/cm3。
經過改良後之元件展現一定水準之電化學性能,表示多孔金鍍銀之設計有助於提升效能。結果顯示,本研究所設計之表面與製程在微型固態儲能系統具有巨大的潛力。
With the development of technology, many portable and wearable electronic devices have been produced and have a great impact on human living habits. However, the consumption of energy has increased, the requirement for electrochemical energy storage devices has also increased. Flexible solid-state micro-supercapacitors (MSCs) not only have the excellent power density and storage capacity, but also can be used in a limited space.
In this work, we use Polyimide as flexible substrates. First, the alloying and de-alloying process of the gold-silver film of the vapor-deposited process is carried out to obtain a nanoporous-gold (NPG) structure as a current collector. Second, a molybdenum oxide is used as an active material in a sputtering process to prepare a finger-type MSC. The MSC device shows the highest volumetric capacitance of 88.24 F/cm3, and the capacitance remains about 83.54 % after a large cycling number of 10000 times. Bending tests are also introduced in this work. Under different bending conditions, the results show that the cyclic voltammetry curves of the device don’t change obviously. This represents that our MSC device has good flexibility.
This work indicates that high conductivity of active materials is important for high specific capacitance and power density of metal oxides. Based on the gold-silver film electrodes have great performance, we coat the porous gold electrode with a silver film by sputtering. The results show that the volumetric capacitance increases from 78.89 to 88.24 F/cm3.
The improved MSC device demonstrates great electrochemical performance. Therefore, the surface and process designed by this work have great potential in micro-solid energy storage systems.
1. D. P. Dubal, P. Gomez-Romero, B. R. Sankapal and R. Holze, “Nickel Cobaltite as an Emerging Material for Supercapacitors: An Overview,” Nano Energy 11, 377-399(2015).
2. P. Simon and Y. Gogotsi, “Materials for electrochemical capacitors,” Nat. Mater. 7, 845-854(2008).
3. A. González, E. Goikolea, J. A. Barrena and R. Mysyk, “Review on supercapacitors: technologies and materials, ” Renew Sustain Energy Rev. 58, 1189-1206(2016).
4. Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon and J. Liu, “Electrochemical Energy Storage for Green Grid,” Chem. Rev. 111, 3577-3613(2011).
5. Y. Wang, J. Guo, T. Wang, J. Shao, D. Wang and Y.-W. Yang, “Mesoporous Transition Metal Oxides for Supercapacitors,” Nanomaterials 5, 1667-1689(2015).
6. Simon, P.; Gogotsi, Y. Nature Materials 7, 845-854(2008).
7. 車倩,超級電容器用過渡金屬氧化物NiCo2O4,南京航空航天大學材料科學與技術學院碩士論文,2013年.
8. M. Vangari, T. Pryor and L. Jiang, “Supercapacitors: Review of Materials and Fabrication Methods,” J. Energy Eng. 139, 72-79(2013).
9. R. Kötz and M. Carlen, “Principles and applications of electrochemical capacitors,” Electrochim. Acta 45, 2483-2498(2000).
10. G. Wang, L. Zhang and J. Zhang, “A Review of Electrode Materials for Electrochemical Supercapacitors,” Chem. Soc. Rev. 41, 797-828(2012).
11. L. L. Zhang and X. S. Zhao, “Carbon-based Materials as Supercapacitor Electrodes,” Chem. Soc. Rev. 38, 2520-2531(2009).
12. M. S. Kolathodi, M. Palei and T. S. Natarajan, “Electrospun NiO nanofibers as cathode materials for high performance asymmetric supercapacitors,” J. Mater. Chem. A 3, 7513-7522(2015).
13. J. Q. Xiao, Q. Lu, and J. G. Chen, “Nanostructured Electrodes for High-performance Pseudocapacitors,” Angew. Chem. Int. Ed. 52, 1882-1889(2013).
14. V. Augustyn, P. Simon and B. Dunn, “Pseudocapacitive Oxide Materials for High-rate Electrochemical Energy Storage,” Energy Environ. Sci. 7, 1597-1614(2014).
15. H. Zhao, W. Han, W. Lan, J. Zhou, Z. Zhang, W. Fu and E. Xie, “Bubble Carbon-nanofibers Decorated with MnO2 Nanosheets as High-Performance Supercapacitor Electrode,” Electrochim. Acta 222, 1931-1939(2016).
16. H. Wang, H. S. Casalongue, Y. Liang and H. Dai, “Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials,” J. Am. Chem. Soc. 132, 7472-7477(2010).
17. S. C. Lee, U. M. Patil, S. J. Kim, S. Ahn, S.-W. Kang and S. C. Jun, “All-solid-state flexible asymmetric micro supercapacitors based on cobalt hydroxide and reduced graphene oxide electrodes,” RSC Adv. 6, 43844-43854(2016).
18. C. W. Shen, X. H. Wang, S. W. Li, J. G. Wang, W. F. Zhang and F. Y. Kang, “A high-energy-density micro supercapacitor of asymmetric MnO2-carbon configuration by using micro-fabrication technologies,” J. Power Sources 234, 302-309(2013).
19. Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li and L. Zhang, “Progress of electrochemical capacitor electrode materials: A review,” Int. J. Hydrogen Energy 34, 4889-4899(2009).
20. D. Dubal, J. G. Kim, Y.Kim, R.Holze, C.Lokhande, W. B.Kim “Supercapacitors Based on Flexible Substrates:An Overview”, Energy Technol 2, 325-341(2014).
21. G.Wang,L. Zhang,J. Zhang “A review of electrode materials for electrochemical supercapacitors”, Chem. Soc. Rev. 41, 797-928(2012).
22. Z. Li,T. Chang, G. Yun, J. Guo, B. Yang “2D tin dioxide nanoplatelets decorated graphene with enhanced performance supercapacitor” Journal of Alloys and Compounds 586, 353-359(2014).
23. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V.Grigorieva and A.A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”,Science 306, 666-669(2004).
24. S.Wu,W.Chen ,L.Yan“Fabrication of a 3D MnO2/graphene hydrogel for high-performance asymmetric supercapacitors”,Journal of Materials Chemisity A 2, 2765-2772(2014).
25. D.Chen ,M.K.Song ,S.Cheng ,L.Huang ,M.Liu, “Contribution of carbon fiber paper(CFP) to the capacitance of a CFP-supported manganese oxide supercapacitor”, Journal of Power Sources 248, 1197-1200(2014).
26. Y.Li, D.Cao, Y.Wang, S.Yang, D. Zhang, K.Ye, K.Cheng, J.Yin, G.Wang , Y. Xu “Hydrothermal deposition of manganese dioxide nanosheets on electrodeposited graphene covered nickel foam as a high-performance electrode for supercapacitors” Journal of Power Sources 279, 138-145(2015).
27. L. Hu, J. W. Choi, Y. Yang, S. Jeong, F.L. Mantia, L.F. Cui, Y. Cui “Highly conductive for energy-storage devices” Pans 106, 21490-21494(2009).
28. P. Li, C. Kong, Y. Shang, E. Shi, Y. Yu, W. Qian, F. Wei, J.Q.Wei, K. Wang, H. Zhu, A. Cao, D. Wu “Highly deformation-tolerant carbon nanotube sponges as supercapacitor electrodes” Nanoscale 5, 8472-8479(2013).
29. W. Zhao,Y. Li, S. Wang, X. He, Y. Shang, Q. Peng, C. Wang, S. Du, X. Gui, Y. Yang, E. Shi, S. Wu,W. Xu, A. Cao“Elastic improvement of carbon nanotube sponges by depositing amorphous carbon coating” Carbon 76, 19-26(2014).
30. J. Zhang, Y. Wang,J. Zang, G. Xin, Y.Y uan, X. Qu“Electrophoretic eposition of MnO2-coated carbon nanotubes on a graphite sheet as a flexible electrode for supercapacitors” Carbon 50, 5196-5202(2012).
31. S.-M. Chen, R. Ramachandran, V. Mani and R. Saraswathi, “Recent Advancements in Electrode Materials for the High-performance Electrochemical Supercapacitors: A Review,” Int. J. Electrochem. Sci. 9, 4072-4085(2014).
32. T. Zhai, X. Lu, F. Wang, H. Xia and Y. Tong, “MnO2 nanomaterials for flexible supercapacitors: performance enhancement via intrinsic and extrinsic modification,” Nanoscale Horiz. 1, 109-124(2016).
33. G. Salitra, A. Soffer, L. Eliad, Y. Cohen and D. Aurbach, “Carbon Electrodes for Double‐Layer Capacitors I. Relations Between Ion and Pore Dimensions,” J. Electrochem. Soc. 147, 2486-2493(2000).
34. O. Barbieri, M. Hahn, A. Herzog and R. Kotz, “Capacitance limits of high surface area activated carbons for double layer capacitors,” Carbon 43, 1303-1310(2005).
35. D. Qu and H. Shi, “Studies of activated carbons used in double-layer capacitors,” J. Power Sources 74, 99-107(1998).
36. M. Endo, T. Maeda, T. Takeda, Y. J. Kim, K. Koshiba, H. Hara and M. S. Dresselhaus, “Capacitance and Pore-Size Distribution in Aqueous and Nonaqueous Electrolytes Using Various Activated Carbon Electrodes,” J. Electrochem. Soc. 148, A910-A914(2001).
37. J. N. Barisci, G. G. Wallace and R. H. Baughman, “Electrochemical Characterization of Single-Walled Carbon Nanotube Electrodes,” J. Electrochem. Soc. 147, 4580-4583(2000).
38. S. Shiraishi, H. Kurihara, K. Okabe, D. Hulicova and A. Oya, “Electric double layer capacitance of highly pure single-walled carbon nanotubes (HiPcoTM BuckytubesTM) in propylene carbonate electrolytes,” Electrochem. Commun. 4, 593-598(2002).
39. C. Kim, “Electrochemical characterization of electrospun active carbon nanofiber as an electrode in supercapacitor,” J. Power Sources 142, 382-388(2005).
40. Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, J. Feng, M. Zhang, W. Qian and F. Wei, “A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors,” Adv Mater 22, 3723-3728(2010).
41. Y. Song, J.-L. Xu and X.-X. Liu, “Electrochemical anchoring of dual doping polypyrrole on graphene sheets partially exfoliated from graphite foil for high-performance supercapacitor electrode,” J Power Sources 249, 48-58(2014).
42. C. C. Hu, K. H. Chang, M.C. Lin and Y. T. Wu, “Design and Tailoring of the Nanotublar Arrayed Architecture of Hydrous RuO2 for Next Generation Supercapacitors,” Nano Lett. 6, 2690-2695(2006).
43. S. Devaraj and N. Munichandraiah, “Effect of Crystallographic Structure of MnO2 on its Electrochemical Capacitance Properties,” J. Phys. Chem. C 112, 4406-4417(2008).
44. J. G. Wang, Y. Yang, Z. H. Huang and F. Kang, “Effect of Fe3+ on the Synthesis and Electrochemical Performance of Nanostructured MnO2,” Mater. Chem. Phys. 133, 437-444(2012).
45. L. Lu, H. Xia, J. Feng, H. Wang and M. O. Lai, “MnO2 Nanotube and Nanowire Arrays by Electrochemical Deposition for Supercapacitors,” J. Power Sources 195, 4410-4413 (2010).
46. A. Bahloul, B. Nessark, E. Briot, H. Groult, A. Mauger, K. Zaghib and C. M. Julien, “Polypyrrole-covered MnO2 as Electrode Material for Supercapacitor,” J. Power Sources 240, 267-272(2013).
47. J. Wang, B. Ren, M. Fan, Q. Liu, D. Song and X. Bai, “Hollow NiO Nanofibers Modified by Citric Acid and the Performance as Supercapacitor Electrode,” Electrochim. Acta 92, 197-204(2013).
48. X. Yan, X. Tong, J. Wang, C. Gong, M. Zhang and L. Liang, “Synthesis of Mesoporous NiO Nanoflake Array and its Enhanced Electrochemical Performance for Supercapacitor Applications,” J. Alloys and Compounds 593, 184-189(2014).
49. C. Z. Yuan, L. Yang, L. R. Hou, L. F. Shen, F. Zhang, D. K. Li, X. G. Zhang, “Large-scale Co3O4 nanoparticles growing on nickel sheets via a one-step strategy and their ultra-highly reversible redox reaction toward supercapacitors,” J. Mater. Chem. 21, 18183-18185(2011).
50. K. S. Ryu, K. M. Kim, N.-G. Park, Y. J. Park and S. H. Chang, ” Symmetric redox supercapacitor with conducting polyaniline electrodes,” J. Power Sources 103, 305-309(2002).
51. A. Clémente, S. Panero, E. Spila and B. Scrosati, “Solid-state, polymer-based, redox capacitors,” Solid State Ionics 85, 273-277(1996).
52. A. Laforgue, P. Simon, C. Sarrazin and J.-F. Fauvarque, “Polythiophene-based supercapacitors,” J. Power Sources 80, 142(1999).
53. F. Selampinar, U. Akbulut and L. Toppare, “Conducting polymer composites of polypyrrole and polyimide,” Synth. Met. 84, 185-186(1997).
54. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang and J. J. Zhang, “A review of electrolyte materials and compositions for electrochemical supercapacitors,” Chem. Soc. Rev. 44, 7484-7539(2015).
55. H. Gao and K. Lian, “Proton-conducting polymer electrolytes and their applications in solid supercapacitors: a review,” RSC Adv. 4, 33091-33113(2014).
56. Francois Beguin(著), Elzbieta Frackowiak(著), 張治安(譯), “超級電容器:材料、系統及應用,” 機械工業出版, (2014).
57. D. S. Yu, K. Goh, H. Wang, L. Wei, W. C. Jiang, Q. Zhang, L. M. Dai and Y. Chen, “Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage,” Nat. Nanotech. 9, 555-562(2014).
58. D. Pech, M. Brunet, T. M. Dinh, K. Armstrong, J. Gaudet and D. Guay, “Influence of the configuration in planar interdigitated electrochemical micro-capacitors,” J. Power Sources 230 , 230-235(2013).
59. W. Zaidi, A. Boisset, J. Jacquemin, L. Timperman and M. Anouti, “Deep Eutectic Solvents Based on N-Methylacetamide and a Lithium Salt as Electrolytes at Elevated Temperature for Activated Carbon-Based Supercapacitors,” J. Phys. Chem. C 118, 4033-4042(2014).
60. X.-M. Liu, R. Zhang, L. Zhan, D.-H. Long, W.-M. Qiao, J.-H. Yang and L.-C. Ling, “Impedance of carbon aerogel/activated carbon composites as electrodes of electrochemical capacitors in aprotic electrolyte,” New Carbon Mater 22, 153-1588(2007).
61. B. Huang, X.-Z. Sun, X. Zhang, D.-C. Zhang and Y.-W. Ma, “活性炭基軟包裝超級電容器用有機電解液,” Acta Phys.-Chim. Sin. 29, 1998-2004(2013).
62. M. Beidaghi and Y. Gogots, “Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of microsupercapacitors,” Energy Environ. Sci. 7, 867-884(2014).
63. C. W. Shen, X. H. Wang, W. F. Zhang and F. Y. Kang, “A high-performance three-dimensional micro supercapacitor based on self-supporting composite materials,” J. Power Sources 196, 10465-10471 (2011).
64. D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna and P. Simon, “Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon,” Nature Nanotech. 5, 651-654 (2010).
65. Z. Zeng, X. Long, H. Zhou, E. Guo, X. Wang and Z. Hu, “On-chip interdigitated supercapacitor based on nano-porous gold/manganese oxide nanowires hybrid electrode,” Electrochim. Acta 163, 107-115(2015).
66. M. Beidaghi and C. Wang, “Micro-Supercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultrahigh Power Handling Performance,” Adv. Funct. Mater. 22, 4501-4510(2012).
67. W. Si, C. Yan, Y. Chen, S. Oswald, L. Han and O.G. Schmidt, “On chip, all solid-state and flexible micro-supercapacitors with high performance based on MnOx/Au multilayers,” Energy Environ. Sci. 6, 3218-3223(2013).
68. C. Y. Yang, J. L. Shen, C. Y. Wang, H. J. Fei, H. Bao and G. C. Wang, “All-solid-state asymmetric supercapacitor based on reduced graphene oxide/carbon nanotube and carbon fiber paper/polypyrrole electrodes,” J. Mater. Chem. A 2, 1458-1464(2014).