跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳孟炬
Meng-Chu Chen
論文名稱: 三、五族半導體光偵測器與太陽能電池材料之研究
III-V Semiconductor Photodetectors and Solar Cell Materials
指導教授: 紀國鐘
G-C Chi
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 94
語文別: 英文
論文頁數: 123
中文關鍵詞: 太陽能電池氮化鎵氮化銦二氧化鈦暫態響應紫外光偵測器
外文關鍵詞: quantum efficiency, photodetector, GaN, InN, TiO2
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要在研究三五族光電半導體光元件及材料,重點可分為(一)具有平面式結構之氮化鎵PIN紫外光偵測器及(二)高效能之太陽能電池材料分析兩部分,其分別概述如下:
    (一)在平面式氮化鎵PIN紫外光偵測器的部分,首先研究以離子佈植技術將離子植入氮化鎵材料中其電特性與光特性上的變化,再應用適當的離子源、離子濃度與分佈將氮化鎵材料電特性由P型轉變成N型,並在此佈植過程當中定義元件主動區幾何形狀,進而使之形成平面式PIN紫外光偵測器。
    在本實驗中為了減少元件製程複雜度,利用了離子佈植的方式簡化元件製程,並期望保有如同傳統磊晶方式成長與製作之元件的光電特性。實驗過程中並與傳統方式製作的磊晶型PIN紫外光偵測器作一比較,研究平面型PIN紫外光偵測器在崩潰電壓和光響應度等特性上的不同與改變,並希望在吸收頻譜上得到與磊晶型元件相同或更為陡峭之光吸收截止曲線。
    此外,由於為了達到高頻操作的目的,元件空乏區必須儘可能的縮小以減少載子遷移的距離與時間;但在另一方面,為了增加量子效率,空乏區必須有足夠的厚度以使大量的入射光得以被吸收,因此在響應速度與量子效率之間必須有所取捨,並尋找最佳的平衡點。
    而在量測光響應度與響應頻譜之外,同時也要考慮元件雜訊對於信號擷取與辨析的能力,在這裡頻譜分析儀被利用來量測元件信號的大小,藉由量測元件之暫態響應時間,量子效率和穿隧電流等特性,了解並改善平面式PIN光檢測器之結構與設計,如此將利於元件與其他電路系統之整合,不但大幅降低元件製作成本,並可有效提升元件的特性。
    (二)在高效能太陽能電池材料開發的部分,MOCVD(Metalorganic Chemical Vapor Deposition,有機金屬化學氣相磊晶法)被利用來成長高品質之氮化鎵、氮化銦鎵、氮化銦與二氧化鈦等薄膜。藉由分析材料薄膜與材料界面對於太陽電池光電轉換效率之影響,成長出高吸收特性的氮化銦與二氧化鈦的奈米粒子,再利用薄膜表面的披覆技術成長出高強度與高感光性質的氮化銦薄膜。
    氮化銦材料與二氧化鈦奈米粒子的大小,對於太陽光的吸收與光電能轉換之間的關係,也是研究的重點之一。藉由分析氮化鎵、氮化銦鎵、氮化銦與二氧化鈦等薄膜材料之成長條件與特性,可找出最佳磊晶條件,並進一步研究出元件之光電轉換特性與機制。
    最後,結合PIN光偵測器與高效能太陽能電池的研究,利用已充分瞭解的半導體材料知識與技術,可進行更深入的光電能互換元件的研究與分析。


    In this dissertation, two topics are included. One is planar GaN-based PIN UV photodetector, the other is the growth of InN film for high-efficiency photovoltaic matreial.
    Related to planar GaN-based PIN UV photodetector, first of all, the electrical and optical characteristics of GaN after Si ion implantation and subsequently thermal annealing were studied. Via Si ion implantation, p-type GaN can be converted to n-- or n+-type by proper implanting concentration and annealing conditions. Based on these results, an implanted GaN PIN UV photodetector with a planar geometry is able to be achieved. The dark current and responsivity between a conventional (with vertical structure) and a planar PIN UV photodetector were compared then.
    High-frequency response of the implanted GaN-based PIN UV photodetectors is one of the topics for this project. For increasing the quantum efficiency, large absorption layer should be realized to accept more incident photos. Therefore, it should be compromised between speed of carrier transport and quantum efficiency. Finally, the related material characterizations and device physics will be studied systematically.
    Related to the growth of InN film for high-efficiency photovoltaic material, among these semiconductors, quantum-dot sensitized TiO2 nanoparticles have been well-examined and showed the evidence of electron transfer from the quantum dots into the TiO2. Indium nitride is another candidate for this type of semiconductor-sensitized TiO2 system. InN, a well-characterized III-V semiconductor with a stable wurtzite crystal structure, has been used for visible optoelectronics and high-efficiency solar cell applications. This chemically stable and robust InN has a useful range of band gaps, 0.7~2.1 eV, which result from the crystallinity and quantum confinement effects.

    CONTENTS 摘要……………………………………………………………………………...I Abstract (in English)……………………………………………………............IV 誌謝………………………………………………………………….……….....V Contents………………………………………………………………………...VI Table captions……………………………………….……………………….....IX Figure captions……………………………………………………………….....X CHAPTER 1 INTRODUCTION 1.1 Background………………………………………………………………1 1.2 Aims of this Thesis………………………………………………….……5 1.3 III-V Nitrides for Device Applications ………………………….……...13 1.4 Goal and Scope of this Thesis…………………………………………...15 CHAPTER 2 SEMICONDUCTOR PROCESSING: THEORY AND BACKGROUND INFORMATION 2.1 Ion Implantation ………………………………..………….……….…...26 2.2 Rapid Thermal Processing ………………………………………………33 2.3 Metal/Semiconductor Contacts …………………………….…………...37 2.4 Measurement setup………………………………………………….…...41 CHAPTER 3 PLANAR ULTRA-VIOLET PHOTODETECTORS FORMED BY Si IMPLANTATION INTO p-GaN 3.1 Introduction………………………………………………………….…..53 3.2 Device structure and fabrication ………………………………………..54 3.3 Dark current and photocurrent characteristics…………………………..55 3.4 Responsivity characteristics……………………………………………..57 3.5 Response time measurement…………………………...………………..60 3.6 Summary…………………………………………….…………………..62 CHAPTER 4 PLANAR GaN p-i-n PHOTODETECTORS WITH n+-CONDUCTIVE CHANNEL FORMED BY Si IMPLANTATION 4.1 Introduction………………………………………………………….…..69 4.2 Schematic n+-conductive channel device structure……………………...70 4.3 Photocurrent measurement of the n+-channel photodetector……….……72 4.4 Spectral responsivity measured on n+-channel photodetector……….…..74 4.5 Response time measurement……………………………………………..75 4.6 Summary……………………………………………..…………………..77 CHAPTER 5 THE NEW TYPE PLANAR GaN-BASED p-i-n PHOTODETECTOR 5.1 Introduction……………………………………………………………...83 5.2 Processing Issues of new type device structure…………….……………84 5.3 Photocurrent measurement of the new type photodetector……….……..87 5.4 Spectral responsivity performance on the new type photodetector……...88 5.5 Response time performance measurement………………………………90 5.6 Summary…………………………………………………………..……..91 CHAPTER 6 InN FILM GROWN ON Si(111) SUBSTRATE WITH MULTIPLE BUFFER LAYERS BY MOCVD 6.1 Introduction…………………………………………………..…………100 6.2 Experiments detail of InN thin-film growth……………………………101 6.3 XRD spectrum of InN grown on Si(111) substrate……………..………103 6.4 Photoluminescence of InN film…………………………………………105 6.5 Summary………………………………………………………………..107 CHAPTER 7 CONCLUSION AND FUTURE TRENDS Conclusion……………………………………………….…………………….118 Publication List………………………………122

    Reference
    1. J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Wiley,
    New York, 1967).
    2. The Middle Ultraviolet: Its Science and Technology, edited by A. E. S.
    Green (Wiley, New York, 1966).
    3. L. R. Koller, Ultraviolet Radiation (Wiley, New York, 1965).
    4. A. N. Zaidel and E. Ya. Shreider, Vacuum Ultraviolet Spectroscopy
    (Humphrey, Ann Arbor, MI, 1970).
    5. J. Hennes and L. Dunkleman, The Middle Ultraviolet: Its Science and
    Technology, edited by A. E. S. Green (Wiley, New York, 1966), Chap. 15.
    6. R. E. Huffman, Atmospheric, Ultraviolet Remote Sensing, International
    Geophysics Series (Academic, New York, 1992), Vol. 52.
    7. R. E. Huffman, Ultraviolet Optics and Technology, SPIE Milestone Series
    (SPIE Optical Engineering, Bellingham, Washington, 1993), Vol. MS 80.
    8. G. R. Carruthers, Electro-Optics Handbook, edited by R. W. Waynant and
    M. N. Ediger (McGraw-Hill, New York, 1994), Chap. 15.
    9. J. G. Timothy and R. P. Madden, Handbook on Synchrotron Radiation,
    edited by E. E. Koch (North-Holland, Amsterdam, 1983), pp. 315–366.
    10. M. J. Eccles, M. E. Sim, and K. P. Tritton, Low Light Level Detectors in
    Astronomy (Cambridge University Press, Cambridge, England, 1983).
    11. J. G. Timothy, Publ. Astron. Soc. Pac. 95, 810 (1983).
    12. J. R. Janesick, T. Elliott, S. Collins, H. Marsh, M. Blouke, and M. Freeman, Proc. SPIE 501, 2 (1984).
    13. B. Y. Welsh and M. Kaplan, Proc. SPIE 1743, 452 (1992).
    14. C. L. Joseph, Wisconsin Astrophy. No. 562, 1 (1995).
    15. M. P. Ulmer, M. Razeghi, and E. Bigan, Proc. SPIE 2397, 210 (1995).
    16. V. V. Kuryatkov, H. Temkin, J. C. Campbell, and R. D. Dupuis, “Lownoise photodetectors based on heterojunctions of AlGaN-GaN,” Appl. Phys. Lett., vol. 78, pp. 3340–3342, 2001.
    17. N. Biyikli, O. Aytur, I. Kimukin, T. Tut, and E. Ozbay, “Solar-blind
    AlGaN-based Schottky photodiodes with low noise and high detectivity,”
    Appl. Phys. Lett., vol. 81, pp. 3272–3274, 2002.
    18. J. Y. Duboz, J. L. Reverchon, D. Adam, B. Damilano, F. Semond, N.
    Grandjean, and J. Massies, “High performance solar blind detectors based on AlGaN grown by MBE on Si,” Phys. Stat. Sol. A, vol. 188, pp. 325–328, 2001.
    19. N. Biyikli, I. Kimukin, T. Kartaloglu, O. Aytur, and E. Ozbay, “Highspeed solar-blind photodetectors with indium-tin-oxide Schottky contacts,” Appl. Phys. Lett., vol. 82, pp. 2344–2346, 2003.
    20. W.A. Harrison, Electronic Structure and Properties of Solids, Freeman, San Francisco (1980).
    21. R. Groh, G. Gerey, L. Bartha, and J.I. Pankove, Phys. Stat. Sol. A 26, 353 (1974).
    22. C.J. Sun, P. Kung, A. Saxler, H. Ohsato, E. Bigan, and M. Razeghi, J. Appl. Phys. 76, 236 (1994).
    23. M.E. Lin, B.N. Sverdlov, and H Morkoç, Appl. Phys. Lett. 63, 3625 (1993).
    24. K. Balasurbramanian, Chem. Phys. Lett. 164, 231 (1989).
    Reference
    1. "Optimizing Grating Based Systems" by J.M. Lerner and A. Thevenon in Lasers and Applications, Jan. 1984.
    2. Paul D. Hale, Member, J. Lightwave Tec., 19, 1333(2001).
    3. M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys., vol. 79, pp. 7433–7473, 1996.
    4. J. C. Carrano, T. Li, P. A. Grudowski, R. D. Dupuis, and J. C. Campbell, “Improved detection of the invisible,” IEEE Circuits Devices Mag., vol. 15, pp. 15–24, Sept. 1999.
    5. A. Osinsky, S. Gangopadhyay, B.W. Lim, M. Z. Anwar,M. A. Khan, D. V. Kuksenkov, and H. Temkin, “Schottky barrier photodetectors based on AlGaN,” Appl. Phys. Lett., vol. 72, pp. 742–744, 1998.
    6. D. Walker, X. Zhang, P. Kung, A. Saxler, S. Javapor, J. Xu, and M. Razeghi, “AlGaN ultraviolet photoconductors grown on sapphire,” Appl. Phys. Lett., vol. 68, pp. 2100–2101, 1996.
    7. E. Monroy, F. Calle, J. L. Pau, F. J. Sanchez, E. Munoz, F. Omnes, B. Beaumont, and P. Gibart, “Analysis and modeling of Al Ga N-based Schottky barrier photodiodes,” J. Appl. Phys., vol. 88, pp. 2081–2091, 2000.
    8. V. Adivarahan, G. Simin, G. Tamulaitis, R. Srinivasan, J. Yang, M. A. Khan, M. S. Shur, and R. Gaska, “Indium-silicon codoping of high-aluminum-content AlGaN for solar blind photodetectors,” Appl. Phys. Lett., vol. 79, pp. 1903–1905, 2001.
    9. M. M.Wong, U. Chowdhury, C. J. Collins, B. Yang, J. C. Denyszyn, K. S. Kim, J. C. Campbell, and R. D. Dupuis, “High quantum efficiency AlGaN/GaN solar-blind photodetectors grown by metalorganic chemical vapor deposition,” Phys. Stat. Sol. A, vol. 188, pp. 333–336, 2001.
    10. V. V. Kuryatkov, H. Temkin, J. C. Campbell, and R. D. Dupuis, “Lownoise photodetectors based on heterojunctions of AlGaN-GaN,” Appl. Phys. Lett., vol. 78, pp. 3340–3342, 2001.
    11. N. Biyikli, O. Aytur, I. Kimukin, T. Tut, and E. Ozbay, “Solar-blind AlGaN-based Schottky photodiodes with low noise and high detectivity,” Appl. Phys. Lett., vol. 81, pp. 3272–3274, 2002.
    12 J. Y. Duboz, J. L. Reverchon, D. Adam, B. Damilano, F. Semond, N. Grandjean, and J. Massies, “High performance solar blind detectors based on AlGaN grown by MBE on Si,” Phys. Stat. Sol. A, vol. 188, pp. 325–328, 2001.
    13 N. Biyikli, I. Kimukin, T. Kartaloglu, O. Aytur, and E. Ozbay, “Highspeed solar-blind photodetectors with indium-tin-oxide Schottky contacts,” Appl. Phys. Lett., vol. 82, pp. 2344–2346, 2003.
    14 A. Hirano, C. Pernot, M. Iwaya, T. Detchprohm, H. Amano, and I. Akasaki, “Demonstration of flame detection in room light background by solar-blind AlGaN pin photodiode,” Phys. Stat. Sol. A, vol. 188, pp. 293–296, 2001.
    15 J. D. Brown, Z. Yu, J. Matthews, S. Harney, J. Boney, J. F. Schetzina, J. D. Benson, K. W. Dang, C. Terrill, T. Nohava, W. Yang, and S. Krishnankutty. (1999) Visible-blind UV digital camera based on a 32_32 array of GaN/AlGaN p-i-n photodiodes. MRS Internet J. Nitride Semicond. Res. [Online] Article 9
    16 C. J. Collins, U. Chowdhury, M. M. Wong, B. Yang, A. L. Beck, R. D. Dupuis, and J. C. Campbell, “Improved solar-blind external quantum efficiency of back-illuminated Al Ga N heterojunction p-i-n photodiodes, Electron. Lett., vol. 38, pp. 824–826, 2002.
    17 N. Biyikli, T. Kartaloglu, O. Aytur, I. Kimukin, and E. Ozbay, “High-speed visible-blind GaN-based indium-tin-oxide Schottky photodiodes,” Appl. Phys. Lett., vol. 79, pp. 2838–2840, 2001.
    References
    1. J. I. Pankove and T. D. Moustakas, “Gallium Nitride (GaN) I” and “Gallium Nitride (GaN) II”, Semiconductors and Semimetals, New York: Academic Press, vol. 50 and 57, 1998.
    2. S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, J. Appl. Phys., vol. 86, 1,1999.
    3. E. Monroy, E. Muñoz, F. J. Sánchez, F. Calle, E. Calleja, B. Beaumout, P. Gibart, J. A. Muñoz, and F. Cussó, Semicond. Sci. Technol., vol. 13, 1042, 1998.
    4. S. J. Chang, M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, C. S. Chang, C. J. Kao, G. C. Chi, and J. M. Tsai, IEEE Electron Device Lett., vol. 24, 212, 2003.
    5. J. K. Sheu, C. J. Kao, M. L. Lee,W. C. Lai, L. S. Yeh, G. C. Chi, S. J. Chang, Y. K. Su and J. M. Tsai, , J. Electron. Mater., vol. 32, 400, 2002.
    6. J. K. Sheu and G. C. Chi, J. Phys., vol. 14, R657, 2002.
    7. J. K. Sheu, M. L. Lee, C. J. Tun, C. J. Kao, L. S. Yeh, C. C. Lee, S. J. Chang and G. C. Chi, IEEE J. selected topics in Quantum Electronics, vol. 8, 767, 2002.
    8. W. Yang, T. Nohova, S. Krishnankutty, R. Torreano, S. Mcpherson, and H. Marsh, Appl. Phys. Lett., vol. 73, 1086, 1998.
    9. P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra, Appl. Phys. Lett., vol. 73, 975, 1998.
    10. P. Peumans, A. Yakimov, S. R. Forrest, J. Appl. Phys., vol. 93, 3693, 2003.
    11. X. Zhang, P. Kung, D. Walker, J. Piotrowski, A. Rogalski, A. Saxler, and M. Razeghi, Appl. Phys. Lett. 67, 2028 (1995). “Photovoltaic effects in GaN structures with p- n junctions”
    12. David Wood, Optoelectronic Semiconductor Devices (Prentice Hall, Lon-don, 1994).
    References
    1. J. I. Pankove, “Perspective on gallium nitride” Mater. Res. Soc. Symp. Proc. Vol.162, pp.515-519, 1990.
    2. E. Monroy, E. Muñoz, F. J. Sánchez, F. Calle, E. Calleja, B. Beaumout, P. Gibart, J. A. Muñoz, and F. Cussó, “High-performance GaN p-n junction photodetectors for solar ultraviolet applications”, Semicond. Sci. Technol. Vol.13, pp.1042-1046, 1998.
    3. G. Parish, S. Keller, P. Kozodoy, J. A. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, and U. K. Mishra, “High-performance (Al,Ga)N-based solar-blind ultraviolet p–i–n detectors on laterally epitaxially overgrown GaN”, Appl. Phys. Lett. Vol.75, pp. 247-249, 1999.
    4. E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sánchez, and M.Razeghi, “High-quality visible-blind AlGaN p-i-n photodiodes”, Appl. Phys. Lett. Vol.74, pp.1171-1173, 1999 and references therein.
    5. A. Osinsky, S. Gangopadhyay, J. W. Yang, R. Gaska, D. Kuksenkov, H. Temkin, I. K. Shmagin, Y. C. Chang, J. F. Muth, and R. M. Kolbas, “Visible-blind GaN Schottky barrier detectors grown on Si(111)”, Appl. Phys. Lett. Vol.72, pp.551-553, 1998 and references therein.
    6. J. K. Sheu, M. L. Lee, C. J. Tun, C. J. Kao, L. S. Yeh, M. J. Chen and G. C. Chi , ”Planar GaN ultraviolet photodetectors formed by Si implants into p-GaN” , App Phys Lett ,Vol. 81, No.22, pp.4263-4265, 2002 and references therein.
    7. J. K. Sheu, M. L. Lee , C. J. Tun, C. J. Kao, L. S. Yeh, C. C. Lee, S. J. Chang and G. C. Chi ,”Characterization of Si implants in p-type GaN”, IEEE J. Selected topics in Quantum Electronics,Vol.8, No.4, pp. 767-772, 2002.
    8. J. K. Sheu and G. C. Chi, ”Doping process and dopant characteristics of GaN”, Journal of Physics Vol.14, No.22, pp.R657-R702, 2002.)
    9. L. S. Yeh, M. L. Lee, J. K. Sheu, M. G. Chen , C. J. Kao, G. C. Chi, S. J. Chang and Y. K. Su, ”Low dark current GaN-based PIN ultraviolet photodetector with AlGaN/GaN superlattice p-layer structure” , Solid-State Electronics, Vol.47, pp.873-878,2002.
    References
    1. V. W. L. Chin, T. L. Tansley, and T. Osotchan, J. Appl. Phys. 75, (1994) 7365.
    2. S. K. O’Leary, B. E. Foutz, M. S. Shur, U. V. Bhapkar, and L. F. Eastman, J. Appl. Phys. 83, (1998) 826.
    3. E. Bellotti, B. K. Doshi, K. F. Brennan, J. D. Albrecht, and P. P. Ruden, J. Appl. Phys. 85, (1999) 916.
    4. B. E. Foutz, S. K. O’Leary, M. S. Shur, and L. F. Eastman, J. Appl. Phys. 85, (1999) 7727.
    5. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito and Y. Nanishi, Appl. Phys. Lett. 80, (2002) 3967.
    6. V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, Phys. Status Solidi B 229, (2002) R1.
    7. T. Inushima, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, T. Sakon, M. Motokawa, and S. Ohoya, J. Cryst. Growth 227-228, (2001) 481.
    8. A. Yamamoto, M. Tsujino, M. Ohkubo, and A. Hashimoto, Sol. Energy Mater. Sol. Cells 35, (1994) 53.
    9. A. Yamamoto, M. Tsujino, M. Ohkubo, and A. Hashimoto, J. Cryst. Growth 137, (1994) 415.
    10. A. G. Bhuiyan, A. Yamamoto, A. Hashimoto, Y. Ito, J. Cryst. Growth 236, (2002) 59.
    11. Z. X. Bi, R. Zhang, Z. L. Xie, X. Q. Xiu, Y. D. Ye, B. Liu, S. L. Gu, B. Shen, Y. Shi, Y. D. Zheng, Materials Letters 58, (2004) 3641.
    12. Hiroyuki Shinoda, Nobuki Mutsukura, Thin Solid Films 476 (2005) 276.
    13. Tokuo Yodo, Hiroaki Yona, Hironori Ando, and Daili Nosei, Appl. Phys. Lett., 80, (2002) 968.
    14.A. Yamamoto, K. Sugita, H. Takatsuka, A. Hashimoto, and V. Yu. Davydov,
    J. Cryst. Growth 261, (2004) 275.

    QR CODE
    :::