跳到主要內容

簡易檢索 / 詳目顯示

研究生: 沈涵文
Han-Wen Shen
論文名稱: 太空天氣對Formosat-2及Formosat-3異常事件影響之分析
An analysis on Formosat-2 and Formosat-3 anomalies for space weather operations
指導教授: 許志浤
Jih-Hong Shue
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 太空科學研究所
Graduate Institute of Space Science
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 85
中文關鍵詞: 太空天氣衛星異常
外文關鍵詞: Space Weather, Satellite Anomaly
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當衛星發生異常時,將對衛星運作和儀器觀測有很大的影響,可能造成衛星的運作中斷或儀器的資料錯誤。然而造成衛星異常的情況很多種,所以我們需要先了解異常的發生原因,才能提早預測異常或找出因應的解決辦法。從福衛二號以及福衛三號的衛星異常事件中,我們依照不同的異常原因做分類,將非太空天氣影響的事件去除後,對剩下的可能受太空天氣影響事件做分析。在分析的過程中,我們使用地球磁場以及太陽風資料來分析這些異常事件,並且利用這些太空資料來分析出衛星發生異常時,主要太空環境情形以及影響衛星發生異常的主要條件。


    When an anomaly occurs in a satellite, it can have an influence on the operation to the satellite and the instruments on board, possibly resulting in a disruption the satellite operation or some inaccuracy in the data obtained. Therefore, we need to well understand the causes of anomalies so that we can develop an application to predict them earlier and mitigate the impacts. In this study, we classify the satellite anomalies reported from the Formosat-2 (FS2) and Formosat-3/Cosmic (FS3) satellite for different types of anomalies. After we removed the non-space weather events, we analyze the remaining events in combination with geomagnetic fields and solar wind data. using these space data to analyze the main space environmental conditions when the satellite anomalies occurred.

    中文摘要 I 英文摘要 II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 簡介 1 1.1.1 福爾摩沙衛星二號 1 1.1.2 福爾摩沙衛星三號 2 1.1.3 太空天氣 4 1.1.4 衛星異常事件介紹 5 1.1.5 粒子環境影響 7 1.1.5.1 單一粒子事件效應 7 1.1.5.2 總劑量累積效應 7 1.1.5.3 靜電放電效應 8 1.2 先前的研究 9 1.3 研究動機 20 第二章 研究資料與資料處理分析方法 22 2.1 資料 22 2.1.1 衛星異常事件清單及選擇 22 2.1.2 OMNI資料庫 24 2.1.3 地磁測站資料 24 2.2 分析方法 25 2.2.1 Superposed Epoch Analysis方法 25 第三章 資料分析結果 26 3.1 衛星異常事件之磁經緯度分佈 26 3.2 衛星異常事件之MLT分佈 30 3.3 太陽週期與衛星異常相關性 34 3.4 Kp指數分析 37 3.5 地磁測站資料分析 43 3.5.1 時間序列分析 43 3.5.1.1 單一事件分析 43 3.5.1.2 Superposed Epoch Analysis結果 46 3.5.2 空間比較分析 48 3.6 太陽風速度分析 51 第四章 討論與結論 54 4.1 討論 54 4.2 結論 66 參考文獻 68

    Belov, A & Dorman, L & Iucci, N & Kryakunova, Olga & Ptitsyna, Natalia. (2006). The relation of high- and low-orbit satellite anomalies to different geophysical parameters. 176. 147-163. 10.1007/1-4020-2754-0_8.

    Barnard, L., and M. Lockwood (2011), A survey of gradual solar energetic particle events, J. Geophys. Res., 116, A05103, doi:10.1029/2010JA016133.

    Chern, J. S., A. M. Wu, and S. F. Lin (2006), Lesson learned from FORMOSAT-2 mission operations, Acta Astronautica, 59(1-5), 344–350.

    Chu, C. H., S. K. Yang, C. J. Fong, N. Yen, T. Y. Liu, W. J. Chen, D. Hawes, Y. A. Liou, Y. H. Kuo (2007), The most accurate and stable spaceborne thermometers—FORMOSAT-3/COSMIC constellation, Proc. 21st Annu. AIAA/USU Conf. Small Satell., vol. SSC07-VII-1, 1316.

    Chu, Vicky, S.K. Yang, C.J. Fong, Nick Yen, Tie Liu, W.J. Chen, (2007), The Most Accurate and Stable Space-Borne Thermometers – FORMOSAT-3/COSMIC Constellation, 21st annual AIAA/USU Conference on Small Satellite (Utah, USA).

    Choi, H.S., J. Lee, K.‐S. Cho, Y.‐S. Kwak, I.‐H. Cho, Y.‐D. Park, Y.‐H. Kim, D. N. Baker, G. D. Reeves, and D.‐K. Lee (2011), Analysis of GEO spacecraft anomalies: Space weather relationships, Space Weather, 9, S06001, doi:10.1029/2010SW000597.

    Dungey, J. W. Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6, 47–48, (1961).

    Dmitriev, A. V., P. T. Jayachandran, and L.‐C. Tsai (2010), Elliptical model of cutoff boundaries for the solar energetic particles measured by POES satellites in December 2006, J. Geophys. Res., 115, A12244, doi:10.1029/2010JA015380.

    Echer, E., W. D. Gonzalez, and M. V. Alves (2006), On the geomagnetic effects of solar wind interplanetary magnetic structures, Space Weather, 4, S06001, doi:10.1029/2005SW000200.

    Elliott, H. A., C. J. Henney, D. J. McComas, C. W. Smith, and B. J. Vasquez (2012), Temporal and radial variation of the solar wind temperature-speed relationship, J. Geophys. Res., 117, A09102, doi:10.1029/2011JA017125

    Fong, C.J., S.K. Yang, etc., (2008), FORMOSAT-3/COSMIC Constellation Spacecraft System Performance: After One-Year in Orbit, IEEE Trans. on Geoscience and Remote Sensing.

    Gonzalez, W. D.; Josely, J. A.; Kamide, Y.; Korehi, H. W.; Rostoker, G.; Tsuruntani, B. T.; Vasylianas V. M. What is a geomagnetic storm qm? Journal of Geophysical Research, 99, 5771–5792, (1994).

    Gjerloev, J.W., R. A. Hoffman, M. M. Friel2, L. A. Frank, and J. B. Sigwarth, Substorm behavior of the auroral electrojet indices, Annales Geophysicae (2004) 22: 2135–2149 SRef-ID: 1432-0576/ag/2004-22-2135

    Ganushkina, N. Y., I. Dandouras, Y. Y. Shprits, and J. Cao (2011), Locations of boundaries of outer and inner radiation belts as observed by Cluster and Double Star, J. Geophys. Res., 116, A09234, doi:10.1029/2010JA016376.

    Gjerloev, J. W. (2012), The SuperMAG data processing technique, J. Geophys. Res., 117, A09213, doi:10.1029/2012JA017683.

    Hudson, Mary K. (2013), Space physics: A fast lane in the magnetosphere, Planetary science, Space physics, Nature 504, 383–384, doi: 10.1038/504383a.

    Iucci, N., et al. (2005), Space weather conditions and spacecraft anomalies in different orbits, Space Weather, 3, S01001, doi: 10.1029/2003SW000056.

    Kivelson, M.G., and Russell, C.T. (1995), Introduction to Space Physics, Cambridge University Press, New York.

    Li, X., D. N. Baker, M. Temerin, G. Reeves, R. Friedel, and C. Shen (2005), Energetic electrons, 50 keV to 6 MeV, at geosynchronous orbit: Their responses to solar wind variations, Space Weather, 3, S04001, doi:10.1029/2004SW000105.

    Lin, C.H., J.Y. Liu, C.C. Hsiao, etc., (2009), Global Ionospheric Structure Imaged by FORMOSAT-3/COSMIC: Early Results, Terrestrial, Atmospheric and Oceanic Sciences.

    Lee, T. P., J. T. Hung, W. J. Chen, M. Y. Ye, S. K. Yang (2009), A study of satellite FORMOSAT-2 single event upset, SG2009, Center for space and Remote Sensing Research, National Central University.

    Lee, T.P., Panthalingal Krishnanunni Rajesh, C.Y. Chen, J.Y. Liu, C.J. Fong, J.C. Pon, S.K. Yang, and G.S. Chang, (2014),Abnormal signatures recorded by FORMOSAT-2 and FORMOSAT-3 over South Atlantic Anomaly and Polar Region, Terrestrial, Atmospheric and Oceanic Sciences, 573-580.

    Loto’aniu, T. M., H. J. Singer, J. V. Rodriguez, J. Green, W. Denig, D. Biesecker, and V. Angelopoulos, (2015), Space weather conditions during the Galaxy 15 spacecraft anomaly, Space Weather, 13, 484–502,doi:10.1002/2015SW001239.

    Ohtani, S., M. Nose´, G. Rostoker, H. Singer, A. T. Y. Lui, and M. Nakamura (2001), Storm-substorm relationship: Contribution of the tail current to Dst, J. Geophys. Res., 106, 21,199.

    Pirjola, R., K. Kauristie, H. Lappalainen, A. Viljanen, and A. Pulkkinen (2005), Space weather risk, Space Weather, 3, S02A02, doi:10.1029/2004SW000112.

    Rodger, C. J., M. A. Clilverd, N. R. Thomson, R. J. Gamble, A. Seppala, E. Turunen, N. P. Meredith, M. Parrot, J.-A. Sauvaud, and J.-J. Berthelier (2007), Radiation belt electron precipitation into the atmosphere: Recovery from a geomagnetic storm, J. Geophys. Res., 112, A11307, doi:10.1029/2007JA012383.

    Subedi, Ayush & Adhikari, Binod & Mishra, Roshan. (2017). Variation of Solar Wind Parameters During Intense Geomagnetic Storms. Himalayan Physics. 6. 80. 10.3126/hj.v6i0.18366.

    Zhang Ming, (2003), Modulation of galactic cosmic rays at solar maximum: Observations, Adv. Space Rex, Volume 32, Issue 4, August (2003), Pages 603-614.

    National Research Council. 2000. Radiation and the International Space Station: Recommendations to Reduce Risk. Washington, DC: The National Academies Press. https://doi.org/10.17226/9725.

    ROCSAT-2 Spacecraft Critical Design Review (CDR) Report: ROC2-RP-0498-MMS-T, National Space Organization (NSPO).

    ROCSAT-3 Spacecraft Critical Design Review (CDR) Report: RS3SC-CDRL-103, National Space Organization (NSPO).

    QR CODE
    :::