| 研究生: |
蔡承樺 Cheng-Hua Tsai |
|---|---|
| 論文名稱: |
以表面電漿子及散逸式模態雙重效應為基礎之全方位反射面及其在固態照明的應用 Omnidirectional Reflector Based on Dual Effect ofSurface Plasmonics Resonance and Leaky ModeResonance and Its Application on Solid State Lighting |
| 指導教授: |
伍茂仁
Mount-Learn Wu 張正陽 Jenq-Yang Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 固態照明 、散逸式模態 、表面電漿子 |
| 外文關鍵詞: | Solid State Lighting, Leaky Mode Resonance, Surface Plasmonics Resonance |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要提出以表面電漿子(Surface Plasmonics
Resonance (SPR))及散逸式模態(Leaky Mode Resonance (LMR))雙重效應為基礎的全方位反射鏡(Omnidirectional Reflector)結構,全方位反射鏡使用有限時域差分法(Finite Difference Time Domain)與嚴格耦合波分析法(Rigorous Coupled-Wave Analysis)為模擬計算及設計之基礎。全方位反射鏡主要是以矽為基板並在上層堆疊兩層結構,分別是鋁金屬光柵以及BCB(Benzocyclobutene 苯環丁烯)高分子聚合物薄膜。元件主要的工作機制可分為兩種模態,其一是在金屬光柵上層激發出表面電漿子模態 (SPR)向兩側傳播,另一種模態是期望藉由BCB薄層對於能量無法拘限於薄膜內而將能量以散逸式模態(LMR)穿透至元件外,達到高反射率的效果。
全方位反射鏡經FDTD演算法計算後,光源在波長為450nm由正向
及斜向入射全方位反射鏡後可得到反射率為分別為96.24%及92.00
%。而全方位反射在波長為450nm條件下經由RCWA演算法模擬由0∘至89∘入射所計算出的平均反射率為97.08%。而最低的反射率出現在入射角度為30∘為73%。而在全方位反射波長為400nm至1600nm條件下經由RCWA演算法模擬由正向入射所計算出的平均反射率為95.84%。
並利用RCWA演算法模擬光源波長從400nm至1600nm及入射角度為0∘至89∘的頻譜圖,經模擬計算後可得到平均反射率為95.56%。
除此之外,全方位反射鏡也利用RCWA演算法,模擬在反射鏡上層
具有垂直式氮化鎵薄膜發光二極體的情況,經模擬波長在450nm而入
射角度從0∘至89∘下計算後的平均反射率99.14%。在本論文中也會提及對於製程容忍度的模擬及計算結果。本論文提出一組具有高反射率、較寬的波長頻寬(400nm至1600nm)、全方位(omnidirectional)的特性及低電阻值適用於發光二極體的全方位反射鏡。
In this paper, a two-layer ODR based on the Dual Effect of Surface Plasmonic Resonance (SPR) and Leaky Mode Resonance (LMR) is proposed for the first time to simplify the structure of DESL - ODR. The proposed DESL - ODR is expected to operate in a spectral range covered the visible and infrared wavelengths with a wide angular endurance of incidence. The DESL - ODR is constructed with the aluminum gratings on silicon substrate coated with benzocyclobutene (BCB) as a cover layer. By using the finite difference time domain (FDTD) method and the rigorous coupled-wave analysis (RCWA), the resonance behavior of proposed DESL - ODR is observed. The reflectance of the DESL - ODR structures can be 96.24% and 99.41% at 450 nm for incident angles of 0 and 80°.
For a broadband spectrum of 400 – 1600 nm, the average reflectance can reach 95.56% at 400 – 1600 nm under oblique incidence of 0-89°. It markedly means that most of incident wave over the visible and near infrared range can be reflected even the wide incident angle up to 89°.
Moreover, the minimum reflectance for the wavelength of 450 nm can be maintained 73% at the incident angle of 30°. The thin-GaN LED (light-emitting diode) with DESL - ODR structure is compared as an example to the DESL - ODR structure in free space. For normal incidence, the minimum reflectance of 400 - 1600 nm occurs at the short wavelength of 400 nm with a value of 91%.
[1] E. F. Schubert and J. K. Kim, “Solid - state light sources getting smart”, Science, vol. 308, pp. 1274–1278, (2005).
[2] E. F. Schubert, Light - Emitting Diodes. Cambridge, U.K: Cambridge Univ. Press, (2003).
[3] Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector”, Science 282, 1679–1682 (1998).
[4] Kevin M. Chen, Andrew W. Sparks, Hsin-Chiao Luan, Desmond R. Lim, Kazumi Wada, and Lionel C. Kimerling, “SiO2 /TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method”, Appl. Phys. Lett., 75, 24 (1999).
[5] Michael F. Weber, Carl A. Stover, Larry R. Gilbert,Timothy J. Nevitt, Andrew J. Ouderkirk, “Giant Birefringent Optics in Multilayer Polymer Mirrors", Science , 287, 31, pp. 2451–2456 (2000)
[6] A. Bruyant, G. Le´rondel, P. J. Reece and M. Gal, “All-silicon omnidirectional mirrors based on one-dimensional photonic crystals", Appl. Phys. Lett., 82, 19 (2003).
[7] Jong Kyu Kim, Thomas Gessmann, Hong Luo, and E. Fred Schubert, “A GaInN light-emitting diodes with RuO2/SiO2/Ag omni-directional reflector”, Appl. Phys. Lett. 84, 22 (2004).
[8] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening”, Appl. Phys. Lett. 84, 855 (2004).
[9] S. I. Na, G. Y. Ha, D. S. Han, S. S. Kim, J. Y. Kim, J. H. Lim, D. J. Kim, K. I. Min and S. J. Park, “Selective wet etching of p-GaN for efficient GaN-based light-emitting diodes”, IEEE Photon. Tech. Lett., 18, 1512 (2006).
[10] C. H. Kuo, C. C. Lin, S. J. Chang, Y. P. Hsu, J. M. Tsai, W. C. Lai and P. T. Wang, “Nitride-based light-emitting diodes with p-AlInGaN surface layers”, IEEE Electron. Dev. Lett. 52, 2346 (2005).
[11] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke and J. K. Sheu, “Nitride-based LEDs with an SPS tunneling contact Layer and an ITO transparent contact”, IEEE Photon. Tech. Lett. 16, 1002 (2004).
[12] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode”, Jpn. J Appl. Phys. 41, L1431 (2002).
[13] D. S. Han, J. Y. Kim, S. I. Na, S. H. Kim, K. D. Lee, B. Kim and S. J. Park, “Improvement of Light Extraction Efficiency of Flip-Chip Light-Emitting Diode by Texturing the Bottom Side Surface of Sapphire Substrate”, IEEE Photon. Tech. Lett. 18, 1406 (2006).
[14] C. F. Lin, J. J. Dai, Z. J. Yang, J. H. Zheng and S. Y. Chang, “Self-assembled GaN:Mg inverted hexagonal pyramids formed through a photoelectrochemical wet-etching process”, J. Electrochem. Soc. 8, C185 (2005).
[15] C. S. Chang, S. J. Chang, Y K. Su, C. T. Lee, Y. C. Lin, W. C. Lai, S. C. Shei, J. C. Ke and H. M. Lo, “Nitride-based LEDs with textured side walls”, IEEE Electron. Dev. Lett. 16, 750 (2004).
[16] C. W. Kuo, Y. C. Lee , Y. K. Fu, C. H. Tsai, M. L. Wu,G. C. Chi, and C. H. Kuo, “Optical simulation and fabrication of nitride-based light-emitting diodes with the inverted pyramid sidewalls”, IEEE, Journal of Selected Topics in Quantum Electronics (2009) (Accepted).