跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃俊育
Chun-Yun Huang
論文名稱: 主動式多通道窄頻寬通Ti:PPLN波導濾波及模態轉換器之研究
Active multi-channel narrowband wavelength filters and mode converters in Ti:PPLN waveguides
指導教授: 陳彥宏
Yen-Hung Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 95
語文別: 中文
論文頁數: 59
中文關鍵詞: 主動式電光元件準相位匹配光學波長濾波器鈮酸鋰波導
外文關鍵詞: EO active device, quasi-phase-matching, optical wavelength filtr, LiNbO3 waveguide
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光學濾波器對處理特定頻譜的光學訊號之系統是不可或缺的元件。窄頻濾波器對光學訊號處理及光通訊系統而言尤其需要。本研究目的是在電光週期性極化反轉鈮酸鋰(EO PPLN)波導上發展出超低工作電壓主動式窄頻光學濾波器。本實驗成功的在電光週期化反轉鈮酸鋰波導上做出應用在光通訊波段的高效率索爾克波長濾波及TE ?TM模態轉換器。本元件可擁有與大部份光通訊元件更高相容性的超低操作電壓(TTL level),及簡單的電極結構。且符合國際電信聯盟(ITU)所規定的窄頻寬通條件。
    在本研究中,成功地利用鈦熱擴散及電場極化反轉技術製作出低傳撥損耗的週期性極化反轉鈮酸鋰鈦波導。其傳撥損耗量測得到 。對1-cm長的元件而言,可得到頻寬為 ,且在操作電壓為 得到模態轉換或頻譜穿透率可高於 ,其電壓對應的值為1.1 V×d (μm)/L (cm)。另外溫度對頻譜範圍的調變率為 。在光通訊及光學訊號處理系統的運用上,可藉由電光週期性極化反轉鈮酸鋰鈦波導的窄頻寬通及寬光譜工作範圍的特性來發展強大且吸引人的主動式元件。


    Optical filters are indispensable elements to many optical systems for allowing the process of optical signals in specific spectral portions. Narrowband filters are particularly demanded in optical signal processing and communication. The purpose of this research is to develop ultra-low operating-voltage and narrow-band active optical filters based on electro-optic periodically poled lithium niobate (EO PPLN) waveguides. In this work, we have successfully implemented a highly efficient Šolc-type optical wavelength filter and a TE ?TM mode converter in the c-band telecomm wavelengths based on EO Ti:PPLN waveguides. This device can have an ultra-low (TTL level) operation voltage, is highly compatible to most telecomm devices, has a simple electrode configuration, and has a narrow band-pass width conformed to the International Telecommunication Union (ITU) grid standard.
    In the research, we have successfully fabricated low-loss Ti:PPLN channel waveguides using the thermally Ti-diffused method and electric-field poling technique. This device has multiple channels with each allowing for passing an ITU-grid signal in telecomm c-band wavelength. The propagation loss of the Ti:PPLN waveguides were determined to be as small as 0.17 dB/cm. A mode conversion efficiency or a spectral transmittance of as high as 97% at a bandwidth of ~2.6nm was achieved with this 1-cm device at a very low work voltage of 22 V which corresponds to a normalized value of 1.1 V×d (μm)/L(cm). Its temperature tuned wide spectral working range at a tuning rate of was also demonstrated, showing the device the potential of being an electro-optic tunable filter (EOTF). The characterized narrow band-pass width and the capability of wide spectral working range make the developed EO Ti:PPLN waveguide device a powerful and attractive active device, for example, optical communication and signal process applications.

    摘要.............................................................................................................i 致謝...........................................................................................................iii 目錄...........................................................................................................iv 圖目...........................................................................................................vi 表目...........................................................................................................ix 第一章 緒論........................................................................................1 1.1 積體光學簡介................................................................1 1.2 研究動機........................................................................2 1.3 內容概要........................................................................4 第二章 理論背景................................................................................5 2.1 鈮酸鋰晶體電光效應原理............................................5 2.2 TE TM模態轉換/濾波器.........................................10 2.3 電光准相位匹配元件原理..........................................11 第三章 鈦離子擴散波導模型..........................................................19 3.1 金屬熱擴散鈮酸鋰波導簡介......................................19 3.2 金屬擴散平面式波導理論..........................................20 3.3 通道式波導擴散理論..................................................22 3.4 鈦擴散波導折射率模型..............................................24 3.5 擴散深度量測..............................................................27 3.6 單模波導模擬及設計..................................................30 第四章 元件製程..............................................................................35 4.1 波導製程......................................................................36 4.2 極化反轉製程..............................................................40 第五章 實驗量測結果......................................................................45 5.1 波導特性量測..............................................................45 5.2 電光式波長濾波器之量測..........................................48 第六章 結論與未來展望..................................................................53 6.1 結論..............................................................................53 6.2 未來展望......................................................................53 參考文獻..................................................................................................55

    [1]. S. E. Miller, “Integrated Optics : an introduction, ” Bell. Syst. Tech. J., 48, p2059-2069 (1969)
    [2]. A. K. Srivastava, et. al., “1 Tb/s transmission of 100WDM 10Gb/s channels over 400km of TrueWave fiber,” OFC’98, PD10.
    [3]. G. E. Town, K. Sugden, J. William, I. Bennion, and S. Poolee, “Wide-band Fabry-Perot-like filters in optical fiber,” IEEE Photon. Technol. Lett., 7, p78 (1995).
    [4]. Ishida, H. Takahashi, and Y. Inoue, “Digitally tunable optical filters using arrayed-waveguide grating (AWG) multiplexers and optical switches,” J. Lightwave Technol., 15, p321 (1997).
    [5]. P. H. Lissberger , A. K. Roy and D. J. McCartney, “Narrowband position-tuned multiplayer interference filter for use in single-mode-fibre systems,” Electron. Lett., 21, p798 (1985).
    [6]. M. Kuznetsov, Cascaded coupler “Mach-Zehnder channel dropping filters for wavelength-division-multiplexed optical systems,” J. Lightwave Technol., 12, p226 (1994).
    [7]. J. Stone and L. W. Stulz, “Pigtailed high-finesse tunable fiber Fabry-Perot interferometers with large, medium and small free spectral ranges,” Electron. Lett., 23, p781 (1987).
    [8]. Y. Ohman, “On some new birefringent filter for solar research,” Ark. Astron., 2, p165 (1958).
    [9]. J. W. Evans, “The Šolc birefringent filter,” J. Opt. Soc. Amer., 48, p142 (1958).
    [10]. H. R. Morris, C. C. Hoyt, and P. J. Treado, “Imaging spectrometers for fluorescent and Raman microscopy acousto-optic and liquid crystal tunable filters,” Appl. Spectro., 48, p857-866 (1994).
    [11]. R. C. Alferness, “Efficient waveguide electro-optic TE TM mode converter/wavelength filter,” Appl. Phys. Lett., 36, p513-515 (1980).
    [12]. R. C. Alferness and L. L. Buhl, “Electro-optic waveguide TE TM mode converter with low drive voltage,” Opt. Lett., 5, p473-475 (1980).
    [13]. X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett., 28, p2115-2117 (2003)
    [14]. A. Yariv and P. Yeh, “Optical Waves in Crystal: propagation and control of laser radiation,” John Wiley & Sons, New York (1984).
    [15]. A. Armstrong, N. Bloemergen, J. Ducuing, and P. S. Pershan, “Interactions between light wave in nonlinear dielectrics, “Phys. Rev., 127, p1919 (1962)
    [16]. N. A. Sanford, J. M. Connors, and W. A. Dyers, “Simplified z-propagating DC bias stable TE-TM mode converter fabricatedin y-cut Lithium Niobate,” J. Lightwave Technol., 6, p898-902 (1988)
    [17]. D. Marcuse, “Optimal electrode design for integated optics modulators,” IEEE J. Quantum Electronics, 18, p393-398 (1982)
    [18]. C. S. Lau, P. K. Wei, C. W. Su, and W. S. Wang, “Fabrication of Magnesium-Oxide-Induced Lithium outdiffusion waveguides,” IEEE Photon. Technol. Lett., 4, p872-875 (1992)
    [19]. R. V. Schmidt and I. P. Kaminow, “Metal diffused optical waveguides in LiNbO3,” Appl. Phys. Lett., 25, p458-460 (1974)
    [20]. T. Nozawa, K. Noguchi, H. Miyazawa, and K. Kawano, “Water vapor effects on optical characteristics in Ti:LiNbO3 channel waveguides,” Appl. Opt., 30, p1085-1089 (1991)
    [21]. J. Noda, N. Uchida, S. Saito, T. Saku, and M. Minakada, “Electro-optic amplitude modulation using three-dimensional LiNbO3 waveguide fabricated by TiO2 diffusion,” Appl. Phys. Lett., 27, p19-21 (1975)
    [22]. J. L. Jackel, V. Ramaswamy, and S. P. Lyman, “Elimination of out-diffused surface guiding in titanium-diffused LiNbO3,” Appl. Phys. Lett. 38, p509-511 (1981)
    [23]. B. Chen and A. C. Pastor, “Elimination of Li2O out-diffusion waveguide in LiNbO3 and LiTaO3,” Appl. Phys. Lett., 30, p570-571 (1977)
    [24]. W. K. Burns, C. H. Bulmer, and E. J. West, “Application of Li2O compensation techniques to Ti-diffused LiNbO3 planar and channel waveguides,” Appl. Phys. Lett., 33, p70-72 (1978)
    [25]. T. R. Ranganath and S. Wang, “Suppression of Li2O out-diffusion from Ti-diffused LiNbO3 optical waveguides,” Appl. Phys. Lett., 30, p376-379 (1977)
    [26]. S. Miyazawa, R. Guglielmi, and A. Carenco, “A simple technique for suppressing Li2O out-diffusion in Ti:LiNbO3 optical waveguide,” Appl. Phys. Lett., 31, p742-744 (1977)
    [27]. R. J. Esdaile, “Closed-tube control of out-diffusion during fabrication of optical waveguides in LiNbO3,” Appl. Phys. Lett., 33, p733-734 (1978)
    [28]. F. Caccavale, P. Chakraborty, A. Quaranta, I. Mansour, G. Gianello, S. Bosso, R. Corsini, and G. Mussi, “Secondary-ion-mass spectrometry and near-field studies if Ti:LiNbO3 optical waveguides,” J. Appl. Phys., 78, p5345-5350 (1995)
    [29]. S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol., 5, p700-708 (1987)
    [30]. E. Strake, G. P. Bava, and I. Monstrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with the scalar Finite-Element Method,” J. Lightwave Technol., 6, p1126-1135 (1988)
    [31]. 陳柏超,『應用於準相位匹配二次諧波產生藍光元件之質子交換波導設計與製作』,清華大學碩士論文,電機系光電組(2000)
    [32]. K. S. Chiang, “Construction of refractive index profiles of planar dielectric waveguides from distribution of effective indexed,” J. Lightwave Technol., LT-3, 2, p385-391 (1985)
    [33]. Y. Ishigame , T. Suhara , and H. Nishihara, “LiNbO3 waveguide second-harmonic-generation device phase matched with a fan-out domain-inverted grating,” Opt. Lett., 16, p375-377 (1991)
    [34]. J. Webjorn, F. Laurell, G. Arvidsson, “Blue light generated by frequency doubling of laser diode light in a Lithium Niobate channel waveguide,” IEEE Photon Techonol. Lett., 1, p316-318 (1989)
    [35]. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic-generation,” Appl. Phys. Lett., 62, p435-436 (1993)
    [36]. Alan C. G. Nutt, Venkatraman Gopalan, and Mool C. Gupta, “Domain inversion in LiNbO3 using direct electron-beam writing,” Appl. Phys. Lett., 60, p2828-2830 (1992)
    [37]. G. Schreiber, H. Suche, Y. L. Lee, W. Grundkotter, V. Quiring, R. Ricken, W. Sohler, “Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed an cw pumping,” Appl. Phys. B, 73, p501-504 (2001)
    [38]. L. H. Peng, Y. J. Shih, and Y. C. Zhang, “Restrictive domain motion in polarization switching of Lithium Niobate,” Appl. Phys. Lett., 81, p1666-1668 (2002)
    [39]. M. Fujimura, T. kodama, T. Suhara, and H. Nishihara, “Quasi-phase-matched self-frequency-doubling waveguide laser in Nd:LiNbO3,” IEEE Photon Techonol. Lett., 12, p1513-1515 (2000)
    [40]. M. N. Armenise, M De Sario, C. Canali, P. Franzosi, J.Singh, R. H. Hutchins, and R. M. De La Rue, “In-plane scattering in titanium-diffused LiNbO3 optical waveguides,” Appl. Phys. Lett., 45, p326-328 (1984)
    [41]. M. De Sario, M. N. Armenise, C. Canali, A. Carnera, P. Mazzoldi, and G. Celotti, “TiO2, LiNb3O8, and (TixNb1-x)O2 compound kinetics during Ti:LiNbO3 waveguide fabrication in the presence of water vapors,” J. Appl. Phys., 57, p1482-1488 (1985)
    [42]. M. Ahmad, K. Chelapathi, and Y. G. K. Patro, “Effect of water vapor in a y-cut lithium niobate waveguide,” Appl. Opt., 35, p1489-1491 (1996)
    [43]. S. Forouhar, G. E. Betts, and W. S. C. Chang, “Effects of water vapor on modes in Ti-indiffused liNbO3 planar waveguides,” Appl. Phys. Lett., 45, p207-209 (1984)
    [44]. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B, 36, p143-147 (1985)
    [45]. R. C. Alferness, “Waveguide electrooptic modulator,” IEEE Trans. Microwave Theory Tech., MTT-30, p1121-1137 (1982)
    [46]. F. Heismann, and R. C. Alferness, “Wavelength-tunable electrooptic polarization conversion in birefringent waveguides,” IEEE J. Quantum Electronics, QE-24, p83-93 (1988)

    QR CODE
    :::