跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉淑華
Shu-hua liu
論文名稱: 利用同步電化學掃描穿隧顯微技術研究苯胺分子在單晶Au(111)面上的吸附結構及聚合機制
Used in-situ EC-STM to study theabsorption structures and electrochemical polymerization mechanism of aniline on single crystal Au (111) face
指導教授: 吳春桂
Chun-Guey Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 94
語文別: 中文
論文頁數: 109
中文關鍵詞: 聚苯胺電化學掃描穿隧顯微技術
外文關鍵詞: EC-STM, Poly(aniline)
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 探討電化學聚合共軛高分子的聚合條件與機制的文
    章不少,因為聚合的條件會改變高分子的聚合機制進而
    影響高分子的品質,但過去文章中所提的機制大部分僅
    為間接推論,並未能於分子層次下進行探討聚合機制,
    本研究利用掃描式穿隧電子顯微鏡(scanning tunneling
    microscopy, STM)技術在電化學作用下同步觀察在不同
    電位下苯胺分子(ani line)在Au (111)電極表面的吸附結
    構及聚合時的機制。實驗結果顯示苯胺分子在不同的電
    位區間下會呈現不同的吸附結構,分別在電位為0.60V
    (vs RHE)時,其吸附結構為(√13 × √31),θ(覆蓋度)
    =0.20 及電位為0.65V (vs RHE)時,其吸附結構為(√13
    × 5),θ=0.25;另外在達聚合電位(0.95V)時苯胺分子
    是以頭對尾的方式聚合形成鏈狀的聚苯胺,在此同時單
    晶金載體也因氧化而生成大小一致且排列整齊的奈米金
    粒子。若將電位快速調到聚合電位後,再觀察單晶金電
    極的表面,發現在聚合電位下,苯胺單體聚合形成聚苯胺
    鏈,且呈現筆直排列狀,每條高分子的寬度約為0.7 nm
    且是單層的高分子鏈,隨時間增加也觀察到第二層的聚
    II
    苯胺鏈形成,且當將電位由聚合電位往低電位調整時,上
    一層的聚苯胺鏈會漸漸脫離吸附面,但第一層聚苯胺鏈穩固的
    吸附在金(111)表面上。


    The mechanism of electrochemical polymerization of conjugated
    polymers such as polyaniline has been well studied. Nevertheless, the
    proposed mechanisms were derived from the indirect evidences. As we
    known, so far no article has reported the polymerization mechanism
    derived directly from the observation of the reaction for aniline in
    molecular level. In this study we used in-situ EC-STM to study the
    absorption structures and electrochemical polymerization mechanism of
    aniline on single crystal Au (111) face. It was found that two absorption
    structures were found under different applied potentials: (√13 × √31) with
    θ (the surface coverage) of 0.20 was formed at the potential of 0.60V
    (vs RHE) and (√13 × 5) with θ of 0.25 was observed when the applied
    potential was raised to 0.65V (vs RHE). When the potential was
    raised to the polymerization potential (0.95V vs RHE) of aniline, the
    absorbed aniline molecules start to polymerize at the same time some Au
    nanoparticles which have a similar size and arranged regularly were
    formed. When the applied potential was raise to the polymerization
    potential (1.2 V vs RHE) of aniline abruptly, aniline was polymerized and
    absorbed on the surface of Au (111). The formed polyaniline chains
    contain straight and curved parts. The width of the polymer chains is
    about 0.7 nm and it is a monolayer coverage in the beginning but later on
    double-layer absorption was also observed. When the applied potential
    was decreased gradually, the second layer of polyaniline chains fell off
    but the first layer still absorbed tightly on the Au (111) electrode.

    中文摘要.................................................................................................... I 英文摘要.................................................................................................. III 目錄.......................................................................................................... IV 圖目錄..................................................................................................... VII 表目錄...................................................................................................... XI 第一章、緒論……………………………………………………….……1 1-1 簡介………………………………………………………………….1 1-2 共軛高分子的介紹…………………………………………….……3 1-2-1 共軛高分子的發展歷史……………………………………...3 1-2-2 共軛高分子的應用……………………………………...……5 1-2-3 聚苯胺之歷史發展……………………………..…...………..7 1-3 電化學原理之電極反應....................................................................8 1-4 電化學方法合成PAN 之研究…………………………….……....10 1-5 苯胺聚合機制……………………………………………...………15 1-6 STM 簡介…………………………………………………..………17 1-7 掃描式電子穿隧顯微鏡原理……………………………………...19 1-8 EC-STM 的原理...............................................................................22 1-9 金電極...............................................................................................23 1-9-1 陰離子在金電極的特異性吸附……………………..…….23 1-10 金(100)電極的重排現象…………………………………………25 1-11 探討在單晶電極表面吸附分子之結構及電化學反應的相關文獻 探討................................................................................................30 1-11-1 含氮雜環分子在金(111)上的研究…………………...…30 1-12 研究動機……………………………………………………….…32 第二章、實驗部分………………………………………………..….…34 2-1 藥品部分……………………………………………………...……34 2-2 氣體部分…………………………………………………………...34 2-3 金屬部分…………………………………………………………...34 2-4 儀器設備…………………………………………………………...34 2-5 實驗步驟…………………………………………………………...37 第三章、結果與討論……………………………………………..……40 3-1 金(111)電極在0. 1 M 硫酸中之循環伏安圖...................................40 3-2 金(111)電極在苯胺之硫酸水溶液中的CV 圖................................42 3-2-1 掃描範圍-0.1 ~ 0.9 V(vs RHE)...............................................42 3-2-2 掃描範圍0 ~ 1.6 V(vs RHE)…………………….………….43 3-3 在不同電位下,Au(111)電極在0.1 M H2SO4(aq)中的STM 影像..................................................................................................44 3-4 不同電位下,aniline 吸附於Au(111)面上的STM 影像與結構探 討....................................................................................................48 3-4-1 單晶金工作電極的電位由0.40V (vs RHE) 漸近式的調 至1.25 V (vs RHE)時之電極表面的結構變化.........................48 3-4-2 苯胺於1.2V的聚合反應.........................................................54 第四章、結論…………………………………………….……….……60 第五章、參考文獻……………………………………………………..62

    1. Shirakawa, H.; Ikeda, S. Polymer, 1971, 2, 231.
    2. Shirakawa, H.; Lousi, E. J.; MacDiarmid, A. G.; Chiang, C. K.;
    Heeger,A. J. J.Chem. Soc.,Chem. Commum., 1977, 578.
    3. Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa,
    H.;Lousi, E.J.; Gau, S. C.; MacDiamid A. G. Phys. Rev. Lett., 1977,
    39,1098.
    4. Epstin, A. J.; MacDiarmid, A. G.” polyaniline:Solution, Film, and
    OxidationState, Proc. Faraday Society, Faraday Trans.,1989.
    5. Diaz, A. F.; Bargon, J. “in Handbook of Conducting Polymers,T. A.
    Skotherim Ed.
    6. Wessling, B. Synthetic Metals, 1991, 1, 119
    7. 陳壽安,”從導電高分子之發展談:啟發、創意與突破”
    8. Lertherby, H. J. Chem. Soc., 1862, 15, 16
    9. 黃英碩; 科儀新知;1996, 18, 12.
    10. Eigler, D. M. E.;Schweizer, E. K.Nature.1990, 344, 524.
    11. Chen, C. J.;Introduction to Scanning Tunneling Microscopy;New
    York:Oxford Univ. Press, 1993.
    13. 林瑜勛; 成功大學化學所碩士論文;83 年6 月
    14. 陳嘉崙; 成功大學化學所碩士論文;86 年6 月.
    15. MacDiarmid, A. G. J. Chem .Soc. Faraday Trans. 1986, 82, 2385.
    16. Park, S. M. J. Electrochem. Soc. 1988, 135, 2254.
    17. Park, S. M. J. Electrochem. Soc. 1988, 135, 2497.
    18. Okamoto, H. Synthetic Metals 1998, 96, 7.
    19. Kolb, D. M.; Prog. Surf. Sci. 1996, 51, 109.
    20. Cai, W. B.; Wan, L. J.; Hibino, Y. I.; Ataka, K.-I.; Osawa, M.
    63
    Langmuir 1998, 14, 6992.
    21. Andreasen, G. J.; Vela, M. E.; Salvarezza, R. C.; Ariva, A. J. J.
    Electroanal. Chem. 1999, 467, 230.
    22. Noda, H.; Minoha, T.; Wan, L.-J.; Osawa, M. J. Electroanal.
    Chem. 2000, 481, 62.
    23. Mayer, D.; Dretschkow, Th.; Ataka, K.; Wandlowski, Th. J.
    Electroanal. Chem. 2002, 524-525, 20.
    24. Mayer, D.; Ataka, K.; Wandlowski, Th., Langmuir 2002, 18, 4331.
    25. Agron, P. A.; Carlson, T. A. J. Vac. Sci. Technol. 1982, 20, 815.
    26. Rufael, T. S.; Huntley, D. R.; Mullins, D. R.; Gland, J. L. J. Phys.
    Chem. 1994, 98, 13022.
    27. Bol, C. W. J.; Friend, C. M.; Xu, X. Langmuir 1996, 12, 6083.
    28. Yang, Y. C.; Yen, Y. P.; Oyang, L. Y.; Yau, S. L. Langmuir .2004, in
    preparation.
    29. Ou Yang, L. Y.; Yau, S. L.; Itaya,K. Langmuir 2004, 20, 4596.
    30. Hamelin, A. J. Electroanal. Chem. 1996, 407, 1.
    31. Magnussen, O. M.; Hagebock, J.; Hotlos, J.; Behm, R. J. Farady
    Discuss. 1992, 94, 329.
    32. Wang, J.; Davenport, A. J.; Issaacs, H.S.; Ocko, B. M. Science 1992,
    255, 1416.
    33. Nishizawa, T.; Nakada, T.; Kinoshita, Y.; Miyashita, S.; Sazaki, G.;
    Komatsu, H. Surf. Sci. 1996, 367, L73.
    34. Cuesta, A.; Kleinert, M.; Kolb, D. M. Phys. Chem. Chem. Phys. 2000,
    2, 5684.
    35. Kolb, D. M.; Schneider, J. Electrochim. Acta. 1986, 31, 929.
    36. Li, N.; Zamlynny, V.; LipKowski, J.; Henglein, F.; Pettinger, B. J.
    Electroanal. Chem. 2002, 524-525, 43.
    37. http://www2.kuas.edu.tw/edu/geektareb/key_point_plan_11.htm
    38. http://www.phys.sinica.edu.tw/~mkwu/ssm.pdf
    64
    39. Choi, S. J.; Park, S. M. J. Electrochem. Soc. 2002, 149 (2), E26.
    40. Hofmeister, F. Zur Lehre von der Wirkung der Salze, Arch. Exp.
    Pathol. Pharmakol. (Leipzig) 1888, 24, 247.
    41. Park, S. M. J. Electrochem. Soc. 1988, 135, 2254.
    42. Choi, S. J.; Park, S. M. J. Electrochem. Soc. 2002, 149 (2), E26.
    43. Hofmeister, F. Zur Lehre von der Wirkung der Salze, Arch. Exp.
    Pathol. Pharmakol. (Leipzig) 1888, 24, 247.
    44. 方宣尹 “中央大學化學所碩士論文”93 年6 月.
    45. Kolb, D. M.; Prog. Surf. Sci. 1996, 51, 109.
    46. Lipkowski, J.; Stolberg, L.; in P. Lipkowski, P. Ross, (Eds.)
    Adsorption of Molecules at Metal Electrodes, VCH, New York,
    1992, p. 171, and references therein.
    47. Cunha, F.; Tao, N. J. Langmuir 1996, 12, 6410.
    48. Yang, D.; Bizzotto, D. Lipkowski, J.; Pettinger, B.; Mirwald, S. J.
    Phys. Chem. 1994, 98, 7083.
    49. Hoon-Khosla, M.; Eawcett, W. R.; Chen, A.; LipKowski, J.; Pettinger,
    B. J. Electrochim. Acta. 1999, 45, 611.
    50. Hiroshi, S. ; Hiroshi, M. SCIENCE 2005, 310, 1002.

    QR CODE
    :::